
F. Massacci, D. Wallach, and N. Zannone (Eds.): ESSoS 2010, LNCS 5965, pp. 192–200, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Idea: Using System Level Testing for Revealing SQL
Injection-Related Error Message Information Leaks

Ben Smith, Laurie Williams, and Andrew Austin

North Carolina State University, Computer Science Department
890 Oval Drive, Raleigh, NC, USA

{ben_smith,laurie_williams,andrew_austin}@ncsu.edu

Abstract. Completely handling SQL injection consists of two activities:
properly protecting the system from malicious input, and preventing any
resultant error messages caused by SQL injection from revealing sensitive
information. The goal of this research is to assess the relative effectiveness of
unit and system level testing of web applications to reveal both error message
information leak and SQL injection vulnerabilities. To produce 100% test
coverage of 176 SQL statements in four open source web applications, we
augmented the original automated unit test cases with our own system level
tests that use both normal input and 132 forms of malicious input. Although we
discovered no SQL injection vulnerabilities, we exposed 17 error message
information leak vulnerabilities associated with SQL statements using system
level testing. Our results suggest that security testers who use an iterative, test-
driven development process should compose system level rather than unit level
tests.

Keywords: SQL, Exception, Tomcat, Java, web application, system level, unit
testing, database, SQL injection attacks, coverage, error message.

1 Introduction

In this paper, we examine two input validation vulnerabilities that are in the
CWE/SANS Top 25 Most Dangerous Programming Errors1 due to their prevalence
and potential damage: SQL injection vulnerabilities and error message information
leak vulnerabilities. SQL injection vulnerabilities occur when a lack of input
validation could allow a user to force unintended system behavior by altering the
logical structure of a SQL statement using SQL reserved words and special characters
[1, 2]. The CWE categorizes SQL injection vulnerabilities as a subset of input
validation vulnerabilities, which occur when a system does not assert that input falls
within an acceptable range, allowing the system to be exploited to perform unintended
functionality [3]. Error message information leak vulnerabilities are caused when an
application does not correctly handle an exceptional condition and, as a result,
sensitive information is revealed to the attacker [4, 5]. We contend that in web

1 The CWE/SANS Top 25 can be found at http://cwe.mitre.org/top25/.

 Idea: Using System Level Testing 193

applications, where security is paramount, input validation is comprised of both
ensuring that input falls within an acceptable range (e.g. “integer”) and that the
application fails gracefully when input is not within said range.

To expose and mitigate SQL injection vulnerabilities at the white box level, a
development team can execute unit tests that assert that malicious input is rejected by
the components that communicate with the database [6]. In some development
methodologies, components are constructed in horizontal slices that emanate from the
ground up—the components that perform logic and interact with the database are
composed and tested long before the user interface. However, in an iterative
development methodology, teams build software on a feature-by-feature basis in
vertical slices that extend from the database to the user interface [22]. Additionally,
test-driven development implies the incremental creation of tests throughout the
development process [7].

The goal of this research is to assess the relative effectiveness of system and unit
level testing of web applications to reveal both SQL injection vulnerabilities and
error message information leakage vulnerabilities when used with an iterative test
automation practice by a feature development team. We conducted a case study on
four Java-based open source web applications: iTrust2, Hispacta3, LogicServices4, and
TuduLists5. In our case study, we executed and compared JUnit6 unit tests and
HtmlUnit7 system level tests. The purpose of this study is to determine whether
system level testing8 could be used in an iterative or test-driven development scenario
to expose both parts of input validation earlier in the lifecycle—an important
component of building security in from the beginning [8].

The rest of this paper is organized as follows. Section 2 presents the required
background for understanding our study procedure. After that, Section 3 describes
the case study, including the subject applications and experimental setup. Next,
Section 4 presents the results of our case study. Section 5 presents limitations of the
study. Finally, Section 6 describes the conclusions we reached from our study.

2 Background

In this section, we demonstrate an example of a SQL injection vulnerability and discuss
error information leakage vulnerabilities.

SQL Injection Vulnerabilities. Consider a Java method used for the deletion of a
patient’s information in a medical record system. We present the relevant source

2 http://sourceforge.net/projects/itrust
3 http://sourceforge.net/projects/hispacta
4 http://sourceforge.net/projects/logicservice
5 http://sourceforge.net/projects/tudu
6 http://www.junit.org
7 http://htmlunit.sourceforge.net/
8 The approach we propose in this paper tests the web application in the context of its server; a

system level technique. However, our approach also targets specific areas (“hotspots”) of the
web application; a unit level technique. Thus, the way we use HtmlUnit in our case study is a
hybrid of system level and unit level approaches, which is technically considered grey box
testing [8, 9].

194 B. Smith, L. Williams, and A. Austin

code for this operation in Figure 1 (assume that patients are deleted by their names).
The vulnerability in this example was introduced in the line defining the SQL
statement. The example we have presented in Figure 1 performs no input validation
and, as a result, the example contains a SQL injection vulnerability relative to the use
of the name parameter. An attacker could cause change to the interpretation of the
SQL query by entering the SQL command fragment “‘ OR TRUE --“ in the input
field instead of any valid user name in the web form.

The single quotation mark (‘) indicates to the SQL parser that the character
sequence for the username column is closed, the fragment OR TRUE is interpreted as
always true, and the fragment of the query after the hyphens (--) is a comment. The
altered WHERE clause of the SQL statement will be interpreted as always true and thus
every patient is deleted from the table. Because no input validation was performed,
the attacker can exploit the system by inserting the malicious input in the name field,
and cause truncation of the Patients table. Thus, the bolded statement in Figure 1 is
an example of a SQL injection hotspot (or just “hotspot” in this paper)—any source
code location that may contain a SQL injection vulnerability [1, 2].

...
java.sql.Connection mySQLConnector = DriverManager.getConnection();
java.sql.Statement s = mySQLConnector.createStatement("DELETE FROM
Patients WHERE Name = ‘" + name + “’;”);
int result = s.executeUpdate();
 return 1 == result;
...

Fig. 1. Patient Deletion Code in Java; hotspot is bolded

Error message information leak vulnerabilities. These vulnerabilities occur when
an application does not correctly handle exceptional conditions and subsequently
leaks sensitive information to a user [4, 5]. This information can be obviously
dangerous in the case of error messages that contain system or application passwords,
or it may seem more benign, containing only version numbers or stack traces.
Unfortunately, even these seemingly benign error information leaks can provide
valuable information to an attacker and could expose additional attack vectors. Since
a tester cannot tell what information an attacker needs to conduct future attacks, a
good policy is to treat all error information leakage vulnerabilities as if they contain
obviously dangerous information such as passwords.

3 Case Study

In this section, we present information about our case study. Each part of the case
study was conducted using Eclipse v3.3 Europa executed using Java v1.6 running on
an IBM Lenovo T61p running Windows Vista Ultimate with a 2.40Ghz Intel Core
Duo processor and 2GB of RAM. We used MySQL9 v5.0.45-community-nt for our
research database management system.

9 http://www.mysql.com

 Idea: Using System Level Testing 195

Table 1. Information about the Test Subjects (n=4)

Project iTrust Hispacta LogicServices TuduLists
Version 4.0 0.0.3 1.8 2.2
Lines of Code₫ 7707 1991 5011 6178
Production
Classes*

143 42 155 132

Database Classes 20 4 1 5
Hibernate10 No Yes Yes Yes
₫ Source Lines of Code calculated by NLOC: http://sourceforge.net/projects/nloc/
* A production class is any class that is required to be on the class path for the web

application to function correctly (excluding test classes and utility classes)

To obtain our case study applications, we collected information about 12 enterprise
Java web applications, which we found by searching SourceForge11 with the query
“Java web application,” and sampling the first 12 projects that contained the Eclipse
webtools12 project file structure. We then rejected eight subjects from our study
because they did not meet one or many of the following criteria:

• Could be compiled, built, and deployed.
• Contained automated unit tests, written in JUnit, which were distributed with

the source code.
• Relied upon a relational DBMS to store its data.

We were left with the four subjects presented in Table 1. In an attempt to reveal
both SQL injection and error message information leak vulnerabilities in our test
subjects, as stated in Section 1, we created the following systematic, system level,
security testing procedure and executed it on our subjects. By design, this procedure
produces an automated system level test suite that executes all reachable hotspots
with normal and malicious input. We note here that by intrinsic, we mean that we did
not augment or modify the existing test set in any way; values for these measures
were achieved by the unit tests that were distributed with each system.

1. Identify and Instrument Hotspots. We manually inspected the source
code to discover any point where the system interacts with the database.
We note here that hotspots can take many forms; we explain this issue
more below. We have written the Java program SQLMarker, introduced in
our earlier work [9]. SQLMarker keeps a record of the execution state at
runtime for each uniquely identified hotspot13. SQLMarker has a method,
SQLMarker.mark(), which passes the line number and file name to a
research database that stores whether the hotspot has been executed.

10 http://www.hibernate.org/
11 http://sourceforge.net/
12 http://www.eclipse.org/webtools/
13 For larger applications, one could use a static analyzer to determine hotspots’ locations.

196 B. Smith, L. Williams, and A. Austin

2. Record Hotspots. A second class we wrote, called Instrumenter, provides
each manually marked hotspot with a unique identifier comprised of the
filename and line number, and outputs the number of hotspots found. Once
we manually marked each, we executed Instrumenter to store a record of
each of these hotspots.

3. Execute Original Unit Tests. After instrumenting each subject to mark
its executed SQL hotspots, we executed the intrinsic unit tests and
recorded the resultant number of executed statements.

4. Create Test Cases. We used the stored file name and line number of the
hotspot from Step 1 to construct an automated system level test with
HtmlUnit14 that executed the SQL statement located at the stored file
name and line number. We constructed an initial automated test for each
hotspot by using a call hierarchy and manual testing to make web requests
until the hotspot was marked as being executed and then modeled our
automated test after the use case we discovered15.

5. Apply Malicious Input. We modified the test defined in Step 4 to
emulate a malicious user by using 132 forms of malicious input in an
attack list from NeuroFuzz [10] in place of normal input. This part of the
procedure is similar to “fuzzing”. The difference here is that fuzzing is a
semi-random, black box activity; our approach is targeted to specifically
attack the areas where user input might reach a hotspot.

6. Record Result. We then marked each test that caused incorrect SQL
operations or an application error in Step 5 as a successful attack and its
corresponding SQL statement as a vulnerability.

Identifying hotspots may seem trivial, but in fact can be difficult because hotspots
may not always take the same form. One way of discovering vulnerabilities is
automated static analysis tools, which can be designed to check for a particular
hotspot or vulnerability type [11]. We executed static analysis tools on our subjects
and the tools reported no input validation vulnerabilities in any project we examined.

4 Results

This section presents the results of our case study. We first observed, as shown in
Table 2, that there were no intrinsic JUnit test cases that used malicious input. We
conducted all of our 272 system level tests by using HtmlUnit to inject our attack list
into a request parameter, or in the case of TuduLists, to conduct an AJAX request
where the malicious input was injected into an asynchronous JavaScript call. Using
our technique, we found no instances of SQL injection vulnerabilities at the system

14 HtmlUnit is a "GUI-Less browser for Java programs". It models HTML documents and

provides an API that allows you to invoke pages, fill out forms, click links, etc, just like you
do in your "normal" browser. http://htmlunit.sourceforge.net.

15 However, some hotspots were not used by the JSPs in the application, perhaps because these
hotspots were used for database administration only, or the development team had not
finished implementing the use case that required the query. If we could not reach the SQL
statement through the web interface, we augmented the white box test plan to include a
malicious test that directly calls the database class.

 Idea: Using System Level Testing 197

level. No application allowed us to issue commands to the database management
system because prepared statements and Hibernate both perform strong type checking
on the variables used in their hotspots. Hibernate allows developers to create
persistent classes in the object-oriented paradigm that represent individual database
records [12]. However, we found 17 error message information leak vulnerabilities
among the four applications in our case study, summarized in Table 2.

Table 2. Results for the Test Subjects

Project

iT
ru

st

H
is

pa
ct

a

L
og

ic
Se

rv
ic

es

T
ud

uL
is

ts

Hotspots 92 23 48 13
Covered by Intrinsic Tests 89 20 47 3
Statement Coverage (EclEmma) 84% 49% 53% 40%
Test Cases with Malicious Input 0 0 0 0
New System Level Test Cases (Normal
and Malicious)

149 29 80 14

Confirmed Vulnerabilities 2 2 9 4

We found that unit testing could have identified none of the 17 confirmed

vulnerabilities; rather, these confirmed vulnerabilities are system level vulnerabilities
that had to involve the application server. A missing exception handler for pages or
Servlets within Apache Tomcat caused each of the vulnerabilities we discovered. The
example presented in Table 3 and Table 4 helps illustrate why these vulnerabilities
cannot be exposed at the unit level.

Table 3 presents the relevant code from one of the confirmed vulnerabilities that
we found in iTrust, in the file editHCPs.jsp. In other pages within iTrust, there is a
JSP directive declared at the top of the page’s code (along with various navigational
toolbars and headers) that declares an exception handler:

<%@page errorPage="/auth/exceptionHandler.jsp"%>

This directive does not appear in editHCPs.jsp (see Table 3). At the moment an

exception is thrown, Apache Tomcat forwards the user to the page declared in this
directive, if this directive is declared. Otherwise, Apache Tomcat outputs a revealing
stack trace to the user’s browser window, also known as an error message information
leakage.

Since the omission of an exception handler is something that happens in the JSP
code and not the Java code, some form of interaction is required with the application
server (Apache Tomcat) in order to expose the vulnerabilities. One may view each
JSP as a unit, but still the exception handler is a JSP page directive that involves a
separate page; the unit therefore cannot be tested in isolation. The confirmed

198 B. Smith, L. Williams, and A. Austin

vulnerabilities, then, are caused by a system level error: the absence of an exception
handler in the JSP or Servlet code of the application. Consider a JUnit test case that is
written to execute undeclareHCP (see Table 4). This JUnit test case would pass, but
would not expose the vulnerability even if it uses the some malicious input, such as ‘
UNION SELECT. However, an HtmlUnit test case that targets editHCPs.jsp (see
Table 3), produced by our system level testing technique, would expose the
vulnerability using the same attack. That is, the vulnerability is not that an exception
is thrown, but rather that the exception is not correctly handled by the JSP.

Table 3. JSP for Example Vulnerability (editHCPs.jsp)

DeclareHCPAction action = // Action class for declaring the HCP.
String confirm = ""; // used to store the result from the DAO.
String removeHCP = request.getParameter("removeID");
if(removeHCP!=null && !removeHCP.equals("")){
 confirm = action.undeclareHCP(removeHCP);
}
List<PersonnelBean> hcps = action.getDeclaredHCPS();

Table 4. Java Method undeclareHCP

//given: patientDAO, a DAO pertaining to the patients table
//given: iTrustException, a custom-build Exception class for
// handling alternate flow errors
public String undeclareHCP(String input) throws iTrustException {
try {
long hcpID = Long.valueOf(input);
boolean confirm = patientDAO.undeclareHCP(loggedInMID, hcpID);
if (confirm) {
 return "HCP successfully undeclared";
} else
 return "HCP not undeclared";
} catch (NumberFormatException e) {
 throw new iTrustException("HCP's MID not a number");
} catch (DBException e) {
 throw new iTrustException(e.getMessage());
}
}

5 Limitations

Future case studies should examine much larger web applications than the ones in this
study. In addition, the selective criteria as described in Section 3 could have biased
the data. For example, perhaps the fact that all of our test subjects were Tomcat
Servlet applications caused or prevented some security vulnerabilities that would not
have been observable in another architectural setup. In addition, if stored procedures
had been used in any of our test subjects, our results may have been different. The
development teams for each project may have been using other testing techniques to
improve the security posture of our subjects, or security may not have been high on
their list of requirements.

 Idea: Using System Level Testing 199

The container for the applications (in this case, Apache Tomcat) could also be
emulated using a Mock Object pattern [13], and each individual servlet or JSP could
be tested in isolation from one another. However, the quality of the testing results is
entirely dependent on the quality of the mock object’s ability to emulate the server
[13]; additionally, mock objects may not be any less expensive than system testing.
Prepared statements, which separate the user’s input from the structure of the query at
the application level [14], protected the applications in this study. However, prepared
statements are only useful if developers are aware of them and choose to use them.
Our own system level procedure may not have exposed all vulnerabilities latent in the
four subjects. Our procedure was targeted towards SQL injection vulnerabilities,
which did not exist in these sampled applications at the locations of the hotspots we
identified, but other vulnerabilities of varying types may exist in our subjects.

6 Conclusion

In our investigation of the relative effectiveness of unit and system level testing
techniques, we have discovered that developers sometimes miss the fact that input
validation is comprised of both ensuring that input falls within an acceptable range
(e.g. “integer”) and that the application fails gracefully when input is not within said
range. We found that all four of our study subjects use Hibernate and/or properly
constructed prepared statements, which were completely effective for asserting that
input falls within a safe (non-attack) range. Using a systematic system level security
testing procedure to generate an HtmlUnit test suite, we found 17 error message
information leakage vulnerabilities in the four web applications of our study. We
found it impossible to replicate these same 17 vulnerabilities by augmenting the
intrinsic unit test suites with additional malicious tests because vulnerabilities cannot
be exposed at the system level though unit testing.

Our results show that ensuring that error messages resulting from SQL injection
attacks do not reveal sensitive information is an inherently system level activity
because the web server will dictate how and when error messages are displayed.
Thus, an iterative, a feature-based development team conducting a test-driven
automation practice can use a system level test procedure like the one described in
this paper to expose both SQL injection vulnerabilities and error message information
leak vulnerabilities. From a security perspective, unit testing would not be effective
toward this aim, because it cannot take into account the production environment in
which the system exists.

Acknowledgments. We would like to thank the North Carolina State University
Realsearch group for their helpful comments on the paper. In addition, we would like
to thank Yonghee Shin for the foundational work she performed by providing formal
definitions for our SQL hotspot metrics and for her input on the content of this paper.
This work is supported by the National Science Foundation under CAREER Grant
No. 0346903. Any opinions expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science Foundation.

200 B. Smith, L. Williams, and A. Austin

References

1. Halfond, W.G.J., Orso, A.: AMNESIA: analysis and monitoring for neutralizing SQL-
injection attacks. In: 20th IEEE/ACM International Conference on Automated Software
Engineering, Long Beach, CA, USA, pp. 174–183 (2005)

2. Kosuga, Y., Kono, K., Hanaoka, M., Hishiyama, M., Takahama, Y.: Sania: syntactic and
semantic analysis for automated testing against SQL injection. In: 23rd Annual Computer
Security Applications Conference, Miami Beach, FL, pp. 107–117 (2007)

3. Pietraszek, T., Berghe, C.V.: Defending against injection attacks through context-sensitive
string evaluation. In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS, vol. 3858, pp.
124–145. Springer, Heidelberg (2006)

4. Aslam, T., Krsul, I., Spafford, E.: Use of a taxonomy of security faults. In: 19th National
Information Systems Security Conference, Baltimore, MD, pp. 551–560 (1996)

5. Tsipenyuk, K., Chess, B., McGraw, G.: Seven pernicious kingdoms: a taxonomy of
software security errors. IEEE Security & Privacy 3, 81–84 (2005)

6. IEEE: IEEE Standard 610.12-1990, IEEE Standard Glossary of Software Engineering
Terminology (1990)

7. Beck, K.: Test-driven development: By example. Addison-Wesley, Boston (2003)
8. McGraw, G.: Software security: Building security in. Addison-Wesley, Upper Saddle

River (2006)
9. Smith, B., Shin, Y., Williams, L.: Proposing SQL statement coverage metrics. In: The 4th

International Workshop on Software Engineering for Secure Systems at the 30th
International Conference on Software Engineering, Leipzig, Germany, pp. 49–56 (2008)

10. Jiang, Y., Cukic, B., Menzies, T.: Fault Prediction using Early Lifecycle Data. In: The 18th
IEEE International Symposium on Software Reliability, 2007. ISSRE 2007, pp. 237–246
(2007)

11. Livshits, V.B., Lam, M.S.: Finding security vulnerabilities in Java applications with static
analysis. In: USENIX Security Symposium, Baltimore, MD, pp. 18–18 (2005)

12. Bauer, C., King, G.: Hibernate in Action. Manning Publications (2004)
13. Brown, M., Tapolcsanyi, E.: Mock object patterns. In: The 10th Conference on Pattern

Languages of Programs, Monticello, USA (2003)
14. Thomas, S., Williams, L.: Using automated fix generation to secure SQL statements. In:

Proceedings of the Third International Workshop on Software Engineering for Secure
Systems, Minneapolis, MN (2007)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

