
Systematizing Security Test Case Planning Using
Functional Requirements Phrases

 Ben Smith
North Carolina State University

890 Oval Drive, Campus Box 8206
Raleigh, NC 27695
+1(859) 619-8076

ben_smith@ncsu.edu
http://bensmith.zapto.org

ABSTRACT
Security experts use their knowledge to attempt attacks on an
application in an exploratory and opportunistic way in a process
known as penetration testing. However, building security into a
product is the responsibility of the whole team, not just the
security experts who are often only involved in the final phases
of testing. Through the development of a black box security test
plan, software testers who are not necessarily security experts
can work proactively with the developers early in the software
development lifecycle. The team can then establish how
security will be evaluated such that the product can be designed
and implemented with security in mind. The goal of this
research is to improve the security of applications by
introducing a methodology that uses the software system's
requirements specification statements to systematically generate
a set of black box security tests. We used our methodology on a
public requirements specification to create 137 tests and
executed these tests on five electronic health record systems.
The tests revealed 253 successful attacks on these five systems,
which are used to manage the clinical records for approximately
59 million patients, collectively. If non-expert testers can surface
the more common vulnerabilities present in an application,
security experts can attempt more devious, novel attacks.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information
Systems]: Security and Protection

General Terms
Security, Verification, Documentation

Keywords
security, testing, verification, vulnerabilities, requirements

1. INTRODUCTION
Security experts use their knowledge to attempt attacks on an
application in an exploratory and opportunistic way in a process

known as penetration testing. Penetration testing and similar
techniques require the security expert's knowledge to be
effective [1]. For example, a security tester might browse
through a web application, find a form, and submit several
attacks to test that the system properly validates input. She will
use the knowledge of successful attacks to drive her next
attempt. A software tester with no security training would lack
the knowledge to pursue defects the same way an expert does.

Due to time and resource constraints, building security into a
product must be the responsibility of the whole team, not just the
security experts who are often only involved in the final phases
of testing [3]. Through the development of a black box security
test plan that is based on functional requirements specifications,
software testers who are not necessarily security experts can
work proactively with the developers early in the software
development lifecycle. The team can then establish how security
will be evaluated such that the product can be designed and
implemented with security in mind.

The goal of this research is to improve the security of
applications by introducing a methodology that uses the
software system's requirements specification statements to
systematically generate a set of black box security tests. We
evaluated our methodology by using a requirements
specification1 to create a black box security test plan for four
open source and one proprietary electronic health record (EHR)
systems. We executed the resultant test cases on these five
released EHR systems that are currently used to manage the
records of over 59 million patients: OpenEMR2,
ProprietaryMed3, WorldVistA4, Tolven5, and PatientOS6.

2. PROPOSED SOLUTION
This section provides our methodology for developing software
security tests at the application level based on a functional
requirements specification. More information on our
methodology and results can be found on our healthcare wiki7.

The structure of the requirements statement, as well as certain
keywords, can help guide the tester to construct an appropriate

1 http://www.cchit.org
2 http://oemr.org/
3 ProprietaryMed was developed by an organization that wishes to keep

the identity of their product confidential.
4 http://worldvista.org/
5 http://tolven.org/
6 http://patientos.org
7 http://realsearchgroup.com/healthcare/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Copyright is held by the
author/owner(s).
ICSE’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA.
Copyright 2011 ACM 978-1-4503-0445-0/11/05.…$10.00.

type of test. The CWE/SANS Top 258 lists the most dangerous
security programming errors based on prevalence and potential
consequences. Our methodology includes six test types, each of
which can uncover one or more common vulnerabilities from
the Top 25. We demonstrate the methodology in this paper
using functional requirements statements (i.e. functional
requirements [5]), but our methodology does not rely on
requirements to be provided in "shall" format: as long as the key
phrases can be identified, our methodology is applicable.

Our methodology uses key phrases and supporting information
in a requirements statement to determine the type of security test
that will most likely reveal vulnerabilities in the system. In these
examples, the first phrase that the tester comes to after reading
"The system shall provide the ability to…" contains the key
action phrase and is followed by the key object phrase. We call
these phrases key because they define the functionality the
system has with respect to its environment.

Consider this requirement, known as AM 02.04: "The system
shall provide the ability to modify demographic information
about the patient." In AM 02.04, the phrase modify is the key
action phrase, and demographic information about the patient is
the key object phrase. There is no supporting information for
this requirement. This requirement signals the need for Force
Exposure, Input Validation Vulnerability, and Audit test case
types. This key action phrase indicates that an attacker has the
opportunity to input malicious strings that can take the form of a
cross-site scripting [4], SQL injection [2] or many other input
validation vulnerabilities. These attacks, if properly executed,
have the potential to tamper with or reveal information from the
demographic information object. Input Validation Tests, which
our methodology includes, will attempt to tamper with or reveal
information from the demographic information object.
Requirements statements like AM 02.04 typically conform to
the following format: "The system shall provide the ability to
<action> a <object> <and/with/in supporting information>."
The object in these statements is most often a data store, such as
a listing of users or a report regarding multiple data records for
output. The action in these statements is typically an action that
the system will perform on that data store, such as store, graph,
view, print, or edit. The supporting information in these
statements provides additional information as to how, or when
the system should achieve the action. Sometimes the supporting
information is a prepositional phrase in the same sentence or can
extend to an additional sentence.

3. PROGRESS AND EVALUATION
Using the CCHIT requirements, we systematically developed a
black box security test plan consisting of 137 tests. Overall, our
test plan launched 253 successful attacks in the five EHR
systems, averaging 50 failures per EHR. The failures consisted
of both implementation-level defects, such as cross-site
scripting, and design-level issues, such as the lack of encryption
on the backup copy of system data. We developed the security
test plan in approximately 60 person hours. Executing the test
plan manually on each of the case study subjects consumed
approximately six to eight person hours per project. We also
alerted developers to the vulnerabilities we found by posting
them to respective healthcare IT communities' bug report pages.

8 http://cwe.mitre.org/top25

4. RESEARCH PLAN
We will conduct our methodology on requirements
specifications from other domains. This analysis will help us
understand the weaknesses in our existing test case types as well
as evaluate the effectiveness of our methodology in revealing
security issues in software systems that have been developed
outside the realm of health care. We will also create a tool that
uses natural language processing to automatically generate black
box tests based on rules and patterns similar to those in these
case studies.

Also, we will compare our methodology with existing
automated techniques to see what security issues a test plan
developed using our technique may miss that automated static
analysis or automated security scanners may detect. We are also
hoping to discover how our technique may point developers and
security experts to more high-level issues in the design of a
system that can result in security weaknesses. A cross-
comparison of security issues revealed by our methodology and
those revealed by other security evaluation techniques will
provide a wealth of information for both types of security
analysis.

Finally, we will investigate how well our methodology could
help identify requirements that are unclear. Writing test cases
for each requirement as it is elicited will help ensure that
requirements statements are testable as well as unambiguous.
Further, the discussion of security during requirements
elicitation could help prevent the team from missing essential
requirements or introducing requirements that produce security
problems. We will evaluate our methodology by working with
an industrial software development team and incorporating our
methodology during the requirements elicitation phase.

5. ACKNOWLEDGMENTS
The National Science Foundation under CAREER Grant No.
0346903 supports this work. Any opinions expressed in this
material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation. This work is also
supported by the United States Agency for Healthcare Research
Quality. Additionally, this work was supposed by an IBM PhD
Fellowship.

6. REFERENCES
[1] B. Arkin, S. Stender, and G. McGraw, “Software penetration

testing,” IEEE Security & Privacy, vol. 3, no. 1, pp. 84-87,
2005.

[2] W. Halfond, and A. Orso, “AMNESIA: Analysis and
monitoring for NEutralizing SQL injection attacks,” in
International Conference on Automated Software
Engineering, Long Beach, CA, 2005, pp. 174-183.

[3] S. Lipner, “The Trustworthy Computing Security
Development Lifecycle,” in 20th Computer Security
Applications Conference, Tuscon, Arizona, 2004, pp. 2-13.

[4] G. Wassermann, and Z. Su, “Static detection of cross-site
scripting vulnerabilities,” in International Conference on
Software Engineering, Leipzig, Germany, 2008, pp. 171-
180.

[5] K. E. Wiegers, Software Requirements, 2nd Edition,
Redmond, WA: Microsoft Press, 2003.

