
Modifying Without a Trace: General Audit Guidelines are

Inadequate for Electronic Health Record Audit

Mechanisms

Jason King, Ben Smith, Laurie Williams
North Carolina State University

890 Oval Drive, Campus Box 8206
Raleigh, NC 27695-8206

{jtking, ben_smith, laurie_williams}@ncsu.edu

ABSTRACT

Without adequate audit mechanisms, electronic health record

(EHR) systems remain vulnerable to undetected misuse. Users

could modify or delete protected health information without these

actions being traceable. The objective of this paper is to assess

electronic health record audit mechanisms to determine the

current degree of auditing for non-repudiation and to assess

whether general audit guidelines adequately address non-

repudiation. We derived 16 general auditable event types that

affect non-repudiation based upon four publications. We

qualitatively assess three open-source EHR systems to determine

if the systems log these 16 event types. We find that the systems

log an average of 12.5% of these event types. We also generated

58 black-box test cases based on specific auditable events derived

from Certification Commission for Health Information

Technology criteria. We find that only 4.02% of these tests pass.

Additionally, 20% of tests fail in all three EHR systems. As a

result, actions including the modification of patient demographics

and assignment of user privileges can be executed without a trace

of the user performing the action. The ambiguous nature of

general auditable events may explain the inadequacy of auditing

for non-repudiation. EHR system developers should focus on

specific auditable events for managing protected health

information instead of general events derived from guidelines.

Categories and Subject Descriptors

J.3 [Computer Applications]: Life and Medical Sciences –

Medical information systems

General Terms

Design, Security, Standardization

Keywords

audit, log, user-based non-repudiation, accountability, security,

healthcare, privacy

1. INTRODUCTION
Without adequate audit systems to ensure accountability,

electronic health record (EHR) systems remain vulnerable to

undetected misuse, both malicious and accidental. Users could

modify or delete protected health information without these

actions being traceable to the modifier. According to Chuvakin

and Peterson [3], “If [an organization‟s information technology]

isn‟t accountable, the organization probably isn‟t either.” Patients

need to trust the privacy practices and accountability of healthcare

organizations. Administering software audit mechanisms forms a

basis for privacy-driven and accountability-driven policy and

regulations, including government regulations [8]. The United

States Health Insurance Portability and Accountability Act of

1996 (HIPAA) Security and Privacy Rule states that one must

implement, “mechanisms that record and examine activity in

information systems that contain or use electronic protected health

information” [5].

Storing an accurate history of user interaction with a software

application and its underlying data helps build a sense of

accountability, since a user cannot expressly deny performing

certain actions that were recorded by the audit mechanism. In the

case of a medical mistake, audit mechanisms can provide a record

by which healthcare practitioners can exonerate themselves from

legal action by demonstrating that they prescribed the correct drug

at a certain time, or that a certain test result was, in fact, what they

claim it was. The health informatics field needs standards that

address the implementation of software audit mechanisms to

monitor access and information disclosure, including details of

what should be logged, how it should be logged, and when logged

information should be monitored.

The objective of this paper is to assess electronic health record

audit mechanisms to determine the current degree of auditing for

non-repudiation and to assess whether general audit guidelines

adequately address non-repudiation. In performing this study, we

investigate the following questions:

R1: What events should be included in an EHR log file for

non-repudiation?

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference’10, Month 1–2, 2010, City, State, Country.

Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

R2: What are the strengths and weaknesses of software

auditing mechanisms in current open-source EHR

systems?

Software audit log files may include system logs and server logs

that assist with debugging and troubleshooting. For this paper, we

focus on human-readable, semantic user activity logs that contain

data related to user actions that may be monitored for the purpose

of audit and user accountability. In this study, we first perform an

analysis of EHR audit mechanisms by deriving a set of 16 general

assessment criteria, derived from four academic and professional

sources of general auditable events (such as “view data” and

“create data”). Next, we perform an analysis by deriving 58 audit-

related black-box test cases to assess specific user actions (such as

“view diagnosis data” and “view patient demographics”) in an

EHR system. We analyze three open-source EHR systems:

• Open Electronic Medical Records (OpenEMR)1

• Open Medical Record System (OpenMRS)2, with added

Access Logging Module3

• Tolven Healthcare Innovations‟s Electronic Clinician Health

Record (eCHR)4 system, with added Performance Plugin5

module

By evaluating each EHR‟s audit mechanism with both our general

and specific analyses, our goal is to compare and contrast the

results and suggest techniques for healthcare software developers

to strengthen EHR audit mechanisms.

The remainder of this paper is organized as follows. Section 2

briefly discusses background information related to this study and

some key terms and definitions. Section 3 discusses related work

with audit mechanisms. Section 4 describes the formulation of our

general auditable events and specific auditable events assessment

criteria for analyzing non-repudiation in EHR systems. Section 5

presents the open-source EHR systems studied and presents our

case studies of evaluating the open-source EHR audit

mechanisms. Section 6 discusses the implications and significance

of our evaluations. Section 7 presents limitations of our work.

Section 8 presents future work in the field of EHR audit

mechanisms. Finally, Section 9 summarizes our findings and

concludes the paper.

2. BACKGROUND
The United States Department of Justice‟s Global Justice

Information Sharing Initiative defines:

non-repudiation -- a technique used to ensure that someone

performing an action on a computer cannot falsely deny that

they performed that action. Non-repudiation provides

undeniable proof that a user took a specific action [10].

With software systems that manage protected, sensitive data

(including EHR systems), a more-specific definition of non-

repudiation is needed. We further define the following term based

on the definition of non-repudiation above:

1 http://www.oemr.org

2 http://openmrs.org

3 https://wiki.openmrs.org/display/docs/Access+Logging+module

4 http://www.tolven.org/echr.html

5 http://wiki.tolven.org/doc/index.php/Plugin:org.tolven.performance

user-based non-repudiation – a techniques used to ensure that

an authenticated user accountholder performing an action

within a software system cannot falsely deny that they

performed that action.

Böck, et al., identify four primary concerns regarding software

audit mechanism reliability [1]:

• storage confidentiality – malicious users should not be able

to access log entries

• machine-based non-repudiation – log files can be traced to a

specific machine to identify the source of the audit entries

• application-based non-repudiation – log entries can be traced

to trusted software applications such that malicious users

cannot manually create fake log entries

• transmission confidentiality – accuracy and integrity of log

file data is preserved during transmission

Satisfying these concerns is not a simple task, especially for

software developers who may implement software audit

mechanisms without proactively considering the protection and

reliability of the data contained within the log files. Böck, et al.,

suggest that these four concerns should be considered as a core set

of requirements for any software audit mechanism [1]. Yet

actually implementing the software and hardware infrastructure to

fulfill these requirements may prove challenging.

One motivation for implementing EHR audit mechanisms for

user-based non-repudiation involves the mitigation of insider

attack. An insider attack occurs when employees of an

organization with legitimate access to their organizations'

information systems use these systems to sabotage their

organizations' IT infrastructure or commit fraud [9]. Researchers

at the Software Engineering Institute at Carnegie Mellon

University released a comprehensive study on insider threats that

reviewed 49 cases of Insider IT Sabotage between 1996 and 2002

[9]. According to the study:

• 90% of insider attackers were given administrative or high-

level privileges to the target system.

• 81% of the incidents involved losses to the organization, with

dollar amounts estimated between "five hundred dollars" and

"tens of millions of dollars."

• The majority of attacks occurred after the employees were

terminated from the organization.

• Lack of access controls facilitated IT sabotage.

Although federal laws, such as HIPAA, provide legal sanction

against tampering with or stealing medical records, we cannot

assume that employees working within a medical organization

will always follow the rules.

3. RELATED WORK
Related literature has identified several challenges and limitations

with software audit mechanisms. Here, we discuss challenges in

technology and challenges with policy, regulations, and

compliance.

3.1 Challenges in Technology
Audit mechanisms in EHR systems face several challenges and

limitations because of technology. We group these challenges into

two categories: limited infrastructure resources and log file

reliability.

3.1.1 Limited Infrastructure Resources
Behind every piece of software lies some sort of hardware

configuration. Hardware, itself, provides limitations that affect

software. For example, information storage may be restricted to a

single hard drive with a limited storage capacity. As a result, EHR

systems must manage storage resources carefully.

Another challenge involves distributed software systems.

Chuvakin and Peterson suggest that the biggest technological

challenge of audit mechanisms involves determining the location

at which generating, storing, and managing the log files will be

most beneficial for the subject domain and intent of the software

application [3]. In these systems, software components may run

on separate host machines. For example, one machine may host a

database server while a separate machine hosts a web server. In

this situation, software audit mechanisms are not as centralized or

easy to implement with the physically distributed nature of the

overall software application. Here, the actual site of the audit

logging functionality is not easy to define [3]. Should software

generate audit trails at the web server level, at the database server

level, both, or at some third-party location? Software architects

must determine the ideal location of user-based non-repudiation

audit mechanisms to ensure all user accountholder actions are

recorded and monitored.

3.1.2 Log File Reliability
Another technological challenge facing software audit

mechanisms involves reliability of the audit mechanism, itself.

The National Institute of Standards and Technology (NIST)

highlights the issue of breach of audit mechanism log data [8].

Audit mechanism log files need protection to ensure that the data

contained within the log files is unmodified, accurate, and

reliable. Engineering this protection of the audit mechanism log

files may be challenging; it may also be overlooked by system

developers who are unaware or indifferent to the implications of

unprotected log files and inaccurate data that may result from

modified logs. In this unprotected situation, log files are no longer

trustworthy, the audit mechanism is no longer effective for

monitoring user-based non-repudiation, and the accountability of

the system is weakened.

3.2 Challenges in Policy, Regulations, and

Compliance
In this section, we group policy and regulatory challenges into

two categories: ill-defined standards, policies, and regulations;

and ineffective log analysis.

3.2.1 Ill-defined Standards, Policies, and

Regulations
Standards provide a foundation for consistency and quality. With

software systems, coding standards provide a set of guidelines and

suggestions for making program code style consistent across

software applications. Software developers may choose to ignore

standards if they wish, but overall quality and understandability

may be sacrificed.

Log file content, timestamps, and formats may vary externally

over software companies and internally over software applications

of the same company [8]. Distributed web services, for example,

may have different policies based on the host machines [3]; the

database server may have one set of auditing policies, while the

web server may have a completely different set of auditing

policies. In addition, the physical location of the distributed

systems may cause concern. The organization (or country) that

hosts the database server likely has different policies and

regulations compared to the organization (or country) that hosts

the web server. Furthermore, the transmission of data between

these servers may pass through additional organizational

authority, which likely introduces an additional degree of varying

policies and regulations. Chuvakin and Peterson [3] state that

administrators of such complicated distributed systems may not

currently enable security features (such as software audit

mechanisms) by default; instead, software organizations must

actively enable auditing features by choice. Without a default

auditing system enabled, user-based non-repudiation and

enforcement of accountability would likely decline.

Even if software audit mechanisms are enabled, these mechanisms

still face other challenges, such as ambiguous logging

requirements. When implementing audit mechanisms, software

developers may focus on recording only additions, deletions, and

modifications of data. The developers tend to overlook logging

the viewing or reading of data, however [11]. In healthcare [5],

viewing and reading data in EHR systems is a vital concern when

managing protected health information.

Without well-defined standards and regulations by a central

governing body, the industry has no widely accepted standard for

software audit mechanisms [3], including audit mechanisms in

EHR systems. This leaves the responsibility of interpreting and

complying with vague regulatory verbiage to individual software

development teams who may be unprepared, untrained, or

unaware of policies and regulations that govern the software

systems upon which they work.

3.2.2 Ineffective Log Analysis
With respect to software audit mechanisms, accountability and

non-repudiation implies that the stored log files should be

analyzed to monitor compliance. Without log analysis, the audit

trail remains unseen, compliance remains unchecked, and

accountability remains unmonitored for non-repudiation. Log file

analysis seems to fall into three categories: manual, automated, or

a combination of both. However, a current lack of efficient

automated log file analysis policies and tools often leads to

manual log file review [11].

Software companies tend to inadequately prepare, support, and

maintain human log file analyzers [8]. Preparation, support, and

maintenance of effective human analyzers should include two

activities: initial training in current regulations, and continued

training in evolving policy, regulation, and case law. The current

ineffective training practices in industry likely results in

diminished control of accountability and non-repudiation [8].

Schneider [13] compares accountability to defensive strategy:

unacceptable actions (such as a receptionist viewing protected

health data without authorization) may be capable of being

prevented, but must instead be identified to reprimand the given

user who performed the unacceptable actions. Schneider suggests

analysis methods must be mature enough to identify these users

based on digital evidence (such as audit mechanism data), just as

law enforcement investigators collect fingerprints from a crime

scene. Dixon [4] also suggests this notion of computer forensics –

computer data must be preserved, identified, extracted,

documented, and interpreted when legal or compliance issues

transpire. Likewise, effective software audit mechanism analysis

must preserve, identify, extract, document, and interpret log files

entries for user-based non-repudiation.

4. ASSESSMENT METHODOLOGY
Section 4.1 describes our user-based non-repudiation assessment

criteria for EHR audit mechanisms, based on general auditable

events (such as “view data” and “create data”). Section 4.2

describes the development and execution of our black-box test

plan to help evaluate the logging of specific auditable events (such

as “view diagnosis data” and “view patient demographics data”)

for user-based non-repudiation.

4.1 Assessment using Audit Guidelines and

Checklists
Section 4.1.1 describes the derivation of our assessment criteria

for user-based non-repudiation based on general auditable event

types. Section 4.1.2 describes our methodology for assessing EHR

system audit mechanisms.

4.1.1 Derivation of General Auditable Events
Our assessment of user-based non-repudiation first involves

compiling a list of general events that should be logged in

software audit mechanisms, according to other researchers and

standards organizations. General events include basic actions such

as “viewing” and “updating”, but these events do not specify what

information is viewed or updated. Our goal is to compile a set of

common general auditable event types for user-based non-

repudiation based on the general guidelines and checklists from

four academic and professional sources:

• Chuvakin and Peterson [3] provide a general checklist of

items that should be logged in web-based software

applications. We collect 17 auditable events from this source.

• The Certification Commission for Health Information

Technology (CCHIT)6 specifies an appendix of auditable

events specific to EHR systems. CCHIT is a certification

body authorized by the United States Department of Health &

Human Services for the purpose of certifying EHR systems

based on satisfactory compliance with government-developed

criteria for meaningful use [2]. We collect 17 auditable

events from this source.

• The SysAdmin, Audit, Network, Security (SANS) Institute

provides a checklist of information system audit logging

requirements to help advocate appropriate and consistent

audit logs in software information systems [7]. We collect 18

auditable events from this source.

• The “IEEE Standard for Information Technology: Hardcopy

Device and System Security” presents a section on best

practices for logging and auditability, including a listing of

suggested auditable events [6]. We collect 8 auditable events

from this source.

Combining all four sets of data, we collect 60 total general

auditable events and event types. After combining duplicates, our

set contains 28 unique auditable events and event types. The only

item appearing in all four suggested auditable events sets is

“security administration event”. Out of the 28 unique events, 18

(64.3%) are contained in at least two of the source sets. Ten

6 http://www.cchit.org

events (35.7%) are only contained in one source set. The overlap

among the four sources suggests some common understanding

and agreement of general events that should be logged, yet the

disparity seems to indicate disagreement about the scope and

breadth of auditable events. Table 1 provides a comparison of the

four source sets of general auditable events and event types.

Next, we categorize each individual auditable event or event type

from Table 1 into one of two categories: events that affect user-

based non-repudiation, and events that do not affect user-based

non-repudiation. Our categorization is denoted in Table 1 under

the “Affects User-based Non-repudiation” column. When

categorizing these events, we determine if the given event should

be traced to a specific user accountholder in an EHR system. If so,

we categorize this event as one that affects user-based non-

repudiation. If the event need not be traced to a specific user

accountholder, we categorize the event as one that does not affect

user-based non-repudiation. For example, the “view data” event

suggests a user accountholder (such as a physician) has

authenticated into an EHR system and is viewing protected patient

health information. The action of viewing this protected data

should be traceable to the physician‟s user account. Therefore,

this event is categorized as one that does affect user-based non-

repudiation. On the other hand, an “application process failure”

does not suggest any intervention by a user accountholder.

Instead, this event suggests an internal EHR system state change.

Therefore, we categorize this event as not affecting user-based

non-repudiation.

Of the 28 total unique auditable events and event types, we

identify 16 unique events that affect user-based non-repudiation.

Of these 16 actions, only 9 events (56.25%) are suggested by two

or more of the sources. The remaining 7 events (43.75%) are

contained in only one source set.

4.1.2 General Auditable Events Assessment

Methodology
For each EHR system, we deploy the software on a local web

server following the deployment instructions provided by each

EHR‟s community website. Next, we consult official

documentation typically provided on the website for each of the

EHR systems. In the documentation (typically user guides,

development guides, or community wiki pages) we search for

sections on auditing and logging to understand how to access

these mechanisms in the actual application. Once we understand

how to access the auditing mechanism, we open our locally-

deployed EHR system and attempt to access these features to

continue our analysis. We document all of our observations or

difficulties during this analysis process for reflection after the

analysis is complete.

Once we have either physical access to or a general understanding

of the given application‟s auditing mechanism, we record the

following information:

1. A flag (satisfied or unsatisfied) for each of the assessment

criteria listed in the “Logging Actions” column of Table 2.

2. Any observations or important findings that may influence

the results or provide justifications for results

4.2 Black-box Audit Test Cases
Our assessment of user-based non-repudiation also involves

constructing a black-box test plan for testing an EHR system‟s

recording of specific auditable events (such as “view diagnosis

data”). In this paper, we briefly describe the process for the audit

test cases used to evaluate user-based non-repudiation audit

functionality. We developed this methodology in earlier work

[14].

In 2006, through a consensus-based process that engaged

stakeholders, CCHIT defined certification criteria [2] focused on

the functional capabilities that should be included in ambulatory

(outpatient) and inpatient EHR systems. The requirements

specifications contain 284 different functional descriptions of

EHR behavior.

The CCHIT ambulatory certification criteria contain eight

requirements related to audit. The audit requirements contain

functionality such as “The system shall allow an authorized

administrator to set the inclusion or exclusion of auditable events

based on organizational policy & operating requirements/limits.”

One CCHIT audit criterion states that the set of auditable events

in an EHR system should include the following fourteen items:

1. Application start/stop

2. User login/logout

3. Session timeout

4. Account lockout

5. Patient Record created/viewed/updated/deleted

6. Scheduling

7. Query

8. Order

9. Node-authentication failure

10. Signature created/validated

11. PHI Export (e.g. print)

12. PHI import

13. Security administration events

14. Backup and restore

The list provided here verbatim from the CCHIT ambulatory

criteria. The criteria are vague. For example, the phrase “security

administration events” is undefined and could relate to

authentication attempts, deletion of log files, or assigning user

privileges. Likewise the term “scheduling” could relate to

scheduling patient appointments, scheduling system backups, or

scheduling system down-time for maintenance. The interpretation

of these phrases varies, and the intended meanings are ambiguous.

Table 1. A comparison of auditable events by source, with a categorization of events affecting user-based non-repudiation

Auditable Events Source of Software Audit mechanism Checklist Affects User-based

Non-repudiation

Log Entry Item
Chuvakin and
Peterson [3] CCHIT [2] SANS [7] IEEE [6] (Yes or No)

System startup X X X N

System shutdown X X X N

System restart X N

User login/logout X X X Y

Session timeout X Y

Account lockout X Y

Create data X X X Y

Update data X X X Y

Delete data X X X Y

View data X X X Y

Query data X Y

Node-authentication failure X X X N

Signature created/validated X Y

Export data X Y

Import data X Y

Security administration event X X X X N

Scheduling X N

System backup X X Y

System restore X Y

Initiate a network connection X X X N

Accept a network connection X X N

Grant access rights X X X Y

Modify access rights X X X Y

Revoke access rights X X X Y

System, network, or services changes X X X N

Application process abort/failure/abnormal end X X N

Detection of malicious activity X X N

Changes to audit log configuration X N

Due to the vagueness in these auditable events, we elected to

approach the CCHIT certification criteria as a general functional

requirements specification. The criteria describe functionality for

EHR systems, such as editing a patient‟s health record, signing a

note about a patient, and indicating advance directives (e.g. a do-

not-resuscitate order). Using these functional CCHIT

requirements [2], we develop a set of 58 black-box test cases7 that

assess the ability of an EHR system to audit the user actions

specified by these CCHIT requirements. These test cases all

involve a registered user performing a given action within the

EHR system, therefore representing an assessment of user-based

non-repudiation within each EHR system. The 58 test cases

correspond to 58 individual CCHIT requirements statements. Our

test plan covers the 20.4% of the CCHIT requirements that are

relevant to personal or protected health information. The

remaining 79.6% of the CCHIT requirements do not pertain to

personal health information, and therefore do not necessitate an

audit record for user-based non-repudiation.

We iterated through each of the 284 ambulatory CCHIT

requirements, extracting keywords and applying a template (see

Section 4.2.1) to produce a test case when necessary. We generate

a test case from a specific requirement based on keywords within

the requirements statement. Requirements that include key

phrases like “problem list,” “clinical documents,” and “diagnostic

test” all indicate the user‟s interaction with a piece of a patient‟s

protected health information, and should therefore necessitate the

application of our test cast template.

Additionally, we extract an action phrase (e.g. “edit”) and an

object phrase (e.g. “demographics”) from each relevant

requirement to construct the black-box test case. We present the

template used for these black-box tests in Section 4.2.1, and

present an example of a test case and its corresponding

requirement in Section 4.2.2.

4.2.1 Audit Test Case Template
Test Procedure Template:

1. Authenticate as <insert a registered user name>.

2. Open the user interface for <insert action phrase>ing an

<insert object phrase>.

3. Verb an <insert object phrase>with details.

4. Logout as <insert a registered user name>.

5. Authenticate as <insert an administrator’s user name>.

6. Open the audit records for today‟s date.

Expected Results Template:

 The audit records should show that registered user <insert

action phrase>ed an <insert object phrase>.

 The audit records should be clearly readable and easily

accessible.

4.2.2 Audit Test Case Example
Example Natural Language Artifact:

 CCHIT Criteria: AM 03.08.01 – The system shall provide the

ability to associate orders and medications with one or more

codified problems/diagnoses.

7http://healthcare.zapto.org/doku.php?id=public:cchit_black_box_securit

y_test_plan#audit_test_scripts

Example Test Procedure:

1. Authenticate as Dr. Robert Alexander.

2. Remove the association between Theodore S. Smith‟s

Hypertension diagnosis and Zantac.

3. Add the association back between Theodore S. Smith‟s

Hypertension diagnosis and Zantac.

4. Logout as Dr. Robert Alexander.

5. Authenticate as Denny Hudzinger.

6. Open the audit records for today‟s date. If necessary, focus on

patient Theodore S. Smith.

Example Expected Results:

 The audit records should show adding and removing the

association of Theodore S. Smith‟s Hypertension diagnosis

and Zantac, both linked to Dr. Robert Alexander, and with

today‟s date.

 The audit records should be clearly readable and easily

accessible

5. CASE STUDIES
We conduct a case study of three open-source EHR systems using

our assessment methodology described in Section 4. Section 5.1

describes the EHR systems we used in this case study. Section 5.2

describes our EHR audit mechanism assessment based on the

general auditable events assessment criteria from Section 4.1.

Then, Section 5.3 describes our black-box test case evaluation of

three open-source EHR systems.

5.1 Open-source EHR Systems Studied
In this study, we compare and contrast audit mechanisms from

three open-source EHR systems. The criteria for inclusion in this

study involved (1) being open-source for ease-of-access, and (2)

having a fully-functional default demo deployment available

online. For this study, we assess the following EHR systems:

• Open Electronic Medical Records (OpenEMR) system,

• Open Medical Record System (OpenMRS), with added

Access Logging Module

• Tolven Healthcare Innovations‟s Electronic Clinician Health

Record (eCHR) system, with added Performance Plugin8

module

A summary of some of the facts about these software applications

appears in Table 2.

8 http://wiki.tolven.org/doc/index.php/Plugin:org.tolven.performance

5.2 User-based Non-repudiation Assessment
The objective of our user-based non-repudiation assessment of the

three EHR systems is to identify a percentage of satisfaction for

user-based non-repudiation events in Table 1. Since these

auditable events are general (for example, “view data” is a general

form of the event “view diagnosis data”), this assessment

evaluates the effectiveness of following such general auditable

events guidelines when implementing audit mechanisms in EHR

systems. From Table 1, we use the set of auditable events that

affect user-based non-repudiation as the basis for our analysis. As

we assess each open-source EHR system, we mark each auditable

user-based non-repudiation event as being satisfied or unsatisfied

in the given EHR's audit mechanism. To calculate the percentage

of user-based non-repudiation satisfaction, we divide the number

of satisfied actions by the total number of user-based non-

repudiation actions.

A summary of our assessment criteria observations appears in

Table 3. The Access Logging Module within OpenMRS satisfies

18.75% (3 out of 16) of our general auditable events user-based

non-repudiation criteria. The OpenMRS audit mechanism seems

to focus on creating, updating, and viewing patient demographics

and encounters. The auditing mechanisms of OpenEMR and

Tolven eCHR both satisfied fewer auditable events than the

OpenMRS audit mechanism. In OpenEMR, for example, the audit

mechanism only addresses user logins/logouts and viewing of

data. Likewise, Tolven eCHR‟s audit mechanism only addresses

user logins/logouts. The purpose of the Tolven eCHR

Performance Plugin mechanism involves system performance

logging, not specifically user-access logging. Therefore, the

Tolven eCHR logs are not easily parsed by humans for monitoring

user-based non-repudiation.

We also find that OpenEMR allows unrestricted access for

administrative users to both view and modify the audit log

database tables via a default installation of phpMyAdmin9. The

running copy of phpMyAdmin is enabled and configured by

default in OpenEMR, and is accessible through an administrator‟s

login to the application. This administrative access to the audit log

file contents effectively renders the OpenEMR log files

untrustworthy and unreliable, as any malicious administrative user

could alter the log table entries to cover wrongdoings or hide

unauthorized accesses to protected health information. For this

9 http://www.phpmyadmin.net

study, we did not factor audit log file immutability into our

analysis.

5.3 User-based Non-repudiation Assessment

with Black-box Test Cases
We executed the 58 black-box test cases on OpenEMR,

OpenMRS, and Tolven eCHR. We present the results of our

black-box test plan in Table 4. We use the following system to

classify the results of executing the test cases on these two

electronic health record systems:

• Pass: The system met the test case's specified preconditions,

and the actual results matched the expected results. The test

case did not reveal any audit issue.

• Fail: The system met the test case's specified preconditions,

but one or more results did not match the expected results.

The test case revealed an audit issue.

• PNM (Precondition not met): We could not execute the test

case due to constraints in the system's configuration or setup,

or perhaps because the test case makes an assumption about

the system that simply is not true.

• N/A: The test case could not be executed because we could

not find the functionality specified in the requirements.

These systems are not CCHIT-certified, so a missing

implementation for a requirement is understandable.

Of our 174 test cases (58 test cases applied on each of the three

systems), 50% failed, meaning our test plan revealed an event that

should be logged by the system but was not. Additionally, we

analyzed the number of test cases that failed for all three of the

systems and found 12 (or 20.7%) examples of system

functionality that was implemented by the systems, yet produced

no audit record when performed. Examples of user actions that

failed in both systems include:

 Assigning privileges or restrictions to users and groups

 Session timeout

 Changing passwords

 Maintaining the diagnoses associated with a patient

 Recording the prescribing of medications

 Displaying and maintaining an allergy list

 Managing diagnostic tests and test results

As a result, any of these actions may take place without a recorded

trace of the identity of the user who performed the action in these

systems

Table 2. Summary of open-source EHRs studied

 Version /

Release

Date

License Clientele
Added

Modules

OpenEMR 3.2.0 /

February

16, 2010

General Gnu

Public

License

>30 million

clients

None

OpenMRS 1.6.1 /

March

28, 2010

OpenMRS

Public

License

International

client base

Access

Logging

Module

Tolven

eCHR

RC1 /

May 28,

2010

Lesser

General

Public

License

US, Europe,

Asia-Pacific

Performan

ce Plugin

Table 3. Satisfaction of user-based non-repudiation criteria

EHR System
Criteria

Met

Criteria

Not Met

Satisfaction

Percent

OpenEMR

2 14 12.5%

OpenMRS 3

13 18.75%

Tolven eCHRa 1 15 6.5%

Table 4. Results of user-based non-repudiation black-box test

cases for auditing in OpenEMR and Tolven eCHR

System Pass Fail PNM N/A Total

OpenEMR 3 37 0 18 58

OpenMRS 4 23 1 30 58

Tolven eCHR 0 27 2 29 58

Total 7 87 3 77 174

Percent 4.02% 50.00% 1.72% 44.25%

6. MODIFYING WITHOUT A TRACE
Our user-based non-repudiation black-box test results reveal

several scenarios in which user behavior is not properly audited,

based on CCHIT criteria requirements. The audit log of user

actions within a medical records system is essential. Doctors and

other healthcare practitioners depend on the accuracy and

availability of the data in the healthcare system to make life or

death decisions about patient care. In the case of a medical

mistake, audit mechanisms can provide a record by which

healthcare practitioners can exonerate themselves from legal

action by demonstrating that they prescribed the correct drug at a

certain time, or that a certain test result was, in fact, what they

claim it was. Further, with no audit mechanisms in place for user-

based non-repudiation, patients and doctors, alike, could forge

medical records with no chance of getting caught. For example, a

doctor could retroactively create a record of the completion of a

certain test to exonerate herself from a medical malpractice

charge.

In both Tolven eCHR and OpenEMR, the modification of patient

demographic data is not recorded to the audit log file. Neither

application‟s audit mechanism records log entries concerning the

user modifying the demographics, the patient whose

demographics data are modified, the timestamp, or other relevant

information. A patient‟s demographic data is considered protected

data under HIPAA, yet the audit mechanisms fail to track changes

to this data. Medical records contain personal and sensitive

information about what procedures and tests a patient has had, as

well as diagnoses that a patient has received from doctors. For

example, some medical diagnoses are stigmatized, like a sexually

transmitted disease diagnosis. Other information can be life

threatening, such as allergies. Insurance companies as well as

employers are interested in knowing a patient's health record to

make unethical decisions about whether to cover a patient or

whether to hire a patient, respectively.

Additionally, in an insider threat scenario, a rogue administrative

user could assign special privileges to a collaborating malicious

user for creating prescription orders. This privilege would not

otherwise be associated with the given user. None of the

OpenEMR, OpenMRS, or Tolven eCHR audit mechanisms record

the assignment of privileges to users or groups of users. The

assignment of this privilege would go undetected. Further

complicating the scenario, neither OpenEMR, OpenMRS, nor

Tolven eCHR record the creation of prescription orders. In this

case, not only will the assignment of the privilege go unrecorded,

but the actual creation of prescription orders would go

unrecorded, as well. The combination of unaudited events would

greatly benefit the malicious insider threat. With proper auditing

and monitoring polices in place, however, such a threat would be

mitigated.

Both our general auditable events and (specific auditable events

assessments indicate inadequacies in EHR system audit

mechanisms. These two approaches to evaluating the EHR audit

mechanisms highlight a key concern for developers of EHR

software. If developers of EHR audit mechanisms rely only on

generalized checklists of general auditable events such as

CCHIT‟s “view data” and “update data”, they may unintentionally

overlook some of the EHR-specific auditable events for certain

types of protected data.

In Section 3, we discuss a lack of industry-wide standards,

policies, and regulations for audit mechanisms. Considering R1,

we find auditable events guidelines defined by organizations such

as CCHIT too general to ensure adequate auditing in an EHR

system. Whereas our assessment based on these general auditable

events checklists from Chuvakin and Peterson, CCHIT, SANS,

and IEEE finds OpenEMR satisfying 12.5% of the generalized

user-based non-repudiation events, the fine-grained black-box

assessment finds OpenEMR really satisfies only 5.2% of specific

auditable events. Likewise, our assessment based on general

auditable event types finds OpenMRS satisfying 18.75%,

compared to 6.9% of our black-box test cases. Furthermore,

Tolven eCHR satisfies 6.5% of our general auditable event type

criteria and 0% of black-box test cases. The specific auditable

events from our assessment represent actual healthcare-specific

user actions within an EHR system. Therefore, the black-box

audit assessment approach in Section 4.2 provides a more fine-

grained, accurate assessment of user-based non-repudiation

compared to the 16 general auditable events compiled as our

general auditable events assessment criteria. The healthcare field

could benefit from mature, well-defined standards and regulations

to ensure consistency, adequacy, and widespread adoption of

adequate audit mechanisms for ensuring strong user-based non-

repudiation in EHR systems.

With respect to R2, we observed some weaknesses of the three

open-source EHR audit mechanisms. Above all, the lack of

audited events by the three EHR systems is concerning for user-

based non-repudiation in systems that manage protected health

information. Additionally, related research attempts to enhance

audit reliability by proposing fair and irrefutable auditing

techniques [12]. In terms of audit mechanism reliability and user-

based non-repudiation, however, a software audit mechanism‟s

effectiveness depends on the accuracy of events that are logged. If

any person accesses the stored audit log files (such as an

administrative user using the included phpMyAdmin installation

in OpenEMR to access log entry contents), these files should be

considered untrustworthy, inaccurate, and tainted. Steps must be

taken to ensure log files cannot be altered, fabricated, or

destroyed. If log files are unprotected, the software audit

mechanism, as a whole, is effectively useless in terms of accurate

recording, enforcement of accountability, and user-based non-

repudiation.

7. LIMITATIONS
One limitation of this study involves our manual parsing and

interpretation of audit log entries through each EHR‟s user

interface. We based our criteria satisfaction and black-box test

plan results on the information provided by only the audit

mechanism‟s user interface. We did not consider system logs,

server logs, or debug logs for this assessment. Additionally, we

only evaluated three open-source EHR systems. These three

systems may not be representative of the level of auditing that

other EHRs may provide. Furthermore, proprietary systems, in-

particular, may contain a more complete level of auditing for user-

based non-repudiation to help detect malicious user behavior.

Likewise, our derivation of general auditable events in Section 4

only relies upon four academic and professional sources, only one

of which (CCHIT) is healthcare-specific and relates directly to

EHR systems. There may be additional healthcare-specific audit

guidelines and checklists for user-based non-repudiation in related

literature.

With respect to the user-based non-repudiation black box test

plan, the CCHIT requirements may not be representative of every

piece of functionality present in an EHR, and our test plan is

based only on the CCHIT requirements. Also, we may have

misjudged which CCHIT requirements relate to protected health

information for our black-box assessment, and human error may

have resulted in a missing test case that should assess that a

specific user action is auditable. Likewise, we manually derived

the assessment criteria for our general auditable event types

assessment. Varying perspectives and interpretations of the

meaning of some of the ambiguous auditable events (such as

“security administration event" and “scheduling”) may alter

whether on considers the event as affecting user-based non-

repudiation or not.

In terms of our local EHR system deployments, we may have

overlooked some system configurations that may affect auditing

for user-based non-repudiation. We based our assessments on

default installations of the three EHR systems, and a more fine-

grained configuration may affect the system‟s auditing for user-

based non-repudiation.

8. FUTURE WORK
First, additional research could investigate and propose

procedures for designing, implementing, and maintaining tamper-

proof, accurate, and reliable software audit mechanisms. We

found OpenEMR‟s inclusion of unrestricted phpMyAdmin access

to all database table contents detrimental to the reliability of the

EHR system‟s auditing mechanism. Even with adequate auditing

mechanisms for user-based non-repudiation, the contents of the

audit log files are useful and effective only if the log files can be

trusted and immutable.

As mentioned in Section 7, one limitation of this study involves

manually interpreting data presented in each audit mechanism‟s

user interfaces. Additional research could lead to assessment

criteria concerning manual or automated monitoring techniques

for user-based non-repudiation. We found the Tolven eCHR audit

mechanism interface not easily human-readable, since it is

primarily a system performance auditing mechanism. For log

analysis and monitoring for user-based non-repudiation, log

monitoring should not be a complicated, tedious task.

Third, having audit mechanisms defined as functional

requirements in a software requirement specification (with

accompanying test cases) may lead to better user-based non-

repudiation in EHR audit mechanisms. In Section 5, we

constructed our black-box test plan for user-based non-

repudiation by parsing the CCHIT certification criteria, which are

presented similar to functional software requirements. Parsing

these CCHIT criteria as functional requirements led to the

extraction of more specific auditable events for our assessment.

Similarly, if audit mechanism implementations were based on

functional requirements, increased user-based non-repudiation

might be achieved.

9. CONCLUSION
Storing an accurate history of user interaction with a software

application helps build a sense of accountability and non-

repudiation, since a user cannot expressly deny performing certain

actions that were recorded by the audit mechanism. According to

Chuvakin and Peterson [3], “If [an organization‟s information

technology] isn‟t accountable, the organization probably isn‟t

either.”

Current software audit mechanisms face challenges and

limitations associated with ensuring adequate user-based non-

repudiation. Our general auditable events assessment criteria and

specific auditable-event black-box test cases both show major

weaknesses with user-based non-repudiation. With an average of

12.5% of our general auditable events assessment criteria met, our

specific auditable events black-box test evaluation reveals only

4.02% of audit-related test cases pass for all three EHR systems.

This disparity highlights a key problem with following

generalized guidelines for auditing in EHR systems handing

protected health information. Instead of assessing general events

such as “view data” in our general auditable event types

assessment, our specific auditable events approach assesses

specific, EHR-related actions such as “view diagnosis data”,

“view patient demographics data”, and “view prescription data” as

separate auditable events. The more-specific nature of our specific

auditable events assessment provides a more accurate evaluation

of user-based non-repudiation. Software developers for EHR

systems should focus on specific auditable events for managing

protected health information, instead of basing their audit

mechanisms on guidelines or checklists that contain generalized

auditable event types.

Even so, both assessments reveal severe inadequacies in EHR

audit mechanisms for user-based non-repudiation. Even though

HIPAA mandates the implementation of an audit mechanism in

health information systems software, it fails to explicitly define

any guidelines or standards to ensure adequate audit mechanisms

to help ensure accountability of users who have access to

protected health information. Without strong audit mechanisms to

ensure accountability and responsibility, healthcare software

remains vulnerable to undetected misuse, both malicious and

accidental, including insider threat.

10. ACKNOWLEDGMENTS
The National Science Foundation under CAREER Grant No.

0346903 supports this work. Any opinions expressed in this

material are those of the author(s) and do not necessarily reflect

the views of the National Science Foundation.

11. REFERENCES
[1] ck, ., Huemer, D., and Tjoa, A.M., “Towards more

trustable log files for digital forensics by means of „Trusted

computing‟,” in AINA ’10, Proceedings of the 24h IEEE

International Conference on Advanced Information

Networking and Applications. Perth, Australia: IEEE Press,

2010, pp.1020-1027.

[2] “CCHIT Certified 2011 Ambulatory EHR,” Certification

Commission for Health Information Technology, 2011,

Available: http://www.cchit.org/certify/2011/cchit-certified-

2011-ambulatory-ehr.

[3] Chuvakin, A., and Peterson, G., “Logging in the age of web

services,” IEEE Security and Privacy, vol. 7, no. 3, May

2009, pp. 82-85.

[4] Dixon, P., "Overview of Computer Forensics," IEEE

Potentials, vol. 24, 2005, pp.7-10.

[5] HIPAA § 164.312(b), “Technical Safeguards,” 2007,

Available:

http://edocket.access.gpo.gov/cfr_2007/octqtr/pdf/45cfr164.3

12.pdf.

[6] “IEEE standard for information technology: Hardcopy device

and system security,” IEEE Standard, 2008, pp.1-177.

[7] “Information system audit logging requirements,” SANS

Institute, 2007, Available: http://www.sans.org/security-

resources/policies/info_sys_audit.pdf.

[8] Kent, K., and Souppaya, M., "Guide to Computer Security

Log Management," National Institute of Standards and

Technology, Gaithersburg, Maryland, USA: 2006.

[9] Moore, A.P., Cappelli, D.M., and Trzeciak, R.F., The "Big

Picture" of Insider IT Sabotage Across U.S. Critical

Infrastructures, Carnegie Mellon Software Engineering

Institute. CERT Program, 2008.

[10] “Privacy Technology Focus Group: Final Report and

Recommendations,” United States Department of Justice

Global Justice Information Sharing Initiative. September

2006, p.57.

[11] “Revolutionizing health care through information

technology,” National Coordination Office for Information

Technology Research and Development, Arlington, Virginia,

USA: 2004, Available:

http://www.nitrd.gov/Pitac/meetings/2004/20040617/200406

15_hit.pdf.

[12] Robinson, P., Cook, N., and Shrivastava, S., "Implementing

fair non-repudiable interactions with Web services," in

EDOC ’05, Proceedings of the 9th IEEE International

Enterprise Computing Conference. 2005, pp. 195- 206.

[13] Schneider, F., “Accountability for perfection,” IEEE Security

& Privacy, vol. 7, no. 2, 2009, pp. 3-4.

[14] Smith, B., and Williams, L., "Systematizing Security Test

Planning Using Functional Requirements Phrases". North

Carolina State University, Technical Report #2011-5.

12. APPENDIX

Track: Systems

Focus: Computing, Information Science, Security, Software Engineering

Topics Covered:

 Evaluation of health information systems

 Privacy in healthcare

 Security in healthcare

