
Testing Electronic Health Records Applications with a Security Test Pattern
Catalog Developed Using Empirical Data

Ben Smith and Laurie Williams
Department of Computer Science
North Carolina Sate University

Raleigh, NC, USA
[ben_smith, laurie_williams]@ncsu.edu

Abstract— The United States is suffering from a shortage of
software security experts. One expert claims that there are
approximately 1,000 people in the country with the skills
needed for cyber defense, and goes on to say that 20 to 30
times that many are needed. Another report indicates that
today's graduates in software engineering are unprepared to
enter the workforce because they lack a solid understanding
of how to make their applications secure. Due to this
shortage of security expertise, we need a vehicle with which
we can capture and disseminate knowledge about how to
assess whether software systems have adequate defenses
against malicious users.

We adapt the notion of a software design pattern as
proposed by Gamma et al. to the domain of black box
security testing. A design pattern is a description of a
recurring problem and a well-defined description of the core
solution to the problem that is described such that the
pattern can be used many times but never in exactly the
same way. A software security test pattern is a template of a
test case that exposes vulnerabilities, typically by emulating
what an attacker would do to exploit those vulnerabilities.

Capturing attacker behavior in a security test case allows
the systematic, repeated assessment of a system’s defenses
against a particular attack. We codify a process for
developing security test patterns by identifying the
similarities between test cases that expose known
vulnerabilities and abstracting common components to make
the test strategy reusable. Additionally, others can use this
process of developing patterns to capture and disseminate
security testing knowledge and to contribute additional
patterns. Just as design patterns disseminate design
knowledge, expressing proven security testing techniques as
patterns makes them more accessible to people who are not
experts in security, and makes it easier to reuse successful
testing strategies.

The goal of this research is to codify a process for developing a
software security test pattern catalog that provides a vehicle for
capturing and disseminating knowledge about software
security testing based upon grounded theory analysis of
empirical data. We analyzed the CWE/SANS Top 25 Most
Dangerous Programming Errors1 using a grounded theory
approach to produce six initial test patterns. Future studies
will allow us to evolve our pattern catalog and validate our
process within the context of other data sources.

1http://cwe.mitre.org/top25

We applied our initial six test patterns to the Certification
Commission for Health Information Technology (CCHIT)
Ambulatory Criteria to develop test cases from our patterns.
Specifically, we employed 284 functional requirements from
the CCHIT criteria to create a black box security test plan
consisting of 137 security tests for four open source and one
proprietary electronic health record (EHR) system:
OpenEMR2, ProprietaryMed3, WorldVistA4, Tolven5, and
PatientOS6. We then executed the 137 test cases on each of
these five released EHR systems that are currently used to
manage the records of over 59 million patients. This resulted
in a total of 685 test executions. Overall, our test plan
launched 253 (37%) successful attacks in the five EHR
systems that consisted of both implementation-level defects,
such as cross-site scripting, and design-level issues, such as
the lack of encryption on the backup copy of system data.
These vulnerabilities could be catastrophic with respect to
the objective of protecting patients' medical records. We also
alerted developers to the vulnerabilities we found by posting
respective healthcare IT communities' bug report pages.

We further evaluated the test plan by comparing it to two
techniques: automated penetration testing and automated
static analysis, to identify the common vulnerabilities
discovered by each technique. Additionally, our comparison
to other techniques shows that two automated security
assessment tools missed 80-90% of our discovered
vulnerabilities. We have also developed a tool that uses
natural language processing to automate the test case
generation procedure using customizable patterns and
keywords. Our automation of this technique shows
promising results for using a tool to help non-experts in
security to create and use black box security testing in a
systematic fashion. The tool, pattern catalog, test plan and
test results are available from our security test patterns
wiki7.

Keywords- security; testing; black box; patterns; health care

2http://oemr.org
3 ProprietaryMed wishes to keep the identity of their product

confidential.
4http://worldvista.org
5http://tolven.org
6http://patientos.org
7http://securitytestpatterns.org

