
An Empirical Evaluation of the MuJava Mutation Operators

Ben H. Smith
Department of Computer Science
North Carolina State University

Raleigh, NC 27695-8206
bhsmith3@ncsu.edu

Laurie Williams
Department of Computer Science
North Carolina State University

Raleigh, NC 27695-8206
williams@csc.ncsu.edu

Abstract

Mutation testing is used to assess the fault-finding

effectiveness of a test suite. Information provided by
mutation testing can also be used to guide the
creation of additional valuable tests and/or to reveal
faults in the implementation code. However,
concerns about the time efficiency of mutation testing
may prohibit its widespread, practical use. We
conducted an empirical study using the MuClipse
automated mutation testing plug-in for Eclipse on the
back end of a small web-based application. The first
objective of our study was to categorize the behavior
of the mutants generated by selected mutation
operators during successive attempts to kill the
mutants. The results of this categorization can be
used to inform developers in their mutant operator
selection to improve the efficiency and effectiveness
of their mutation testing. The second outcome of our
study identified patterns in the implementation code
that remained untested after attempting to kill all
mutants.

1. Introduction

Mutation testing is a testing methodology in
which two or more program mutations1 (mutants for
short) are executed against the same test suite to
evaluate the ability of the test suite to detect these
alterations [5]. The mutation testing procedure entails
adding or modifying test cases until the test suite is
sufficient to detect all mutants [1]. The post-mutation

1 A mutation is a computer program that has been
purposely altered from the intended version to
evaluate the ability of test cases to detect the
alteration [5].

testing, augmented test suite may reveal latent faults
and will provide a stronger test suite to detect future
errors which might be injected.

The mutation process is computationally
expensive and inefficient [3]. Most often, mutation
operators2 produce mutants which demonstrate the
need to modify the test bed code or the need for more
test cases [3]. However, some mutation operators
produce mutants which cannot be detected by a test
suite, and the developer must manually determine
these are “false positive” mutants. Additionally, the
process of adding a new test case will frequently
detect more than was intended, which brings into
question the necessity of multiple variations of the
same mutated statement.

As a result, empirical data about the behavior of
the mutants produced by a given mutation operator
can help us understand the usefulness of the operator
in a given context. Our research objective is to
compare the resultant behavior of mutants produced
by the set of mutation operators supported in the
MuJava3 tool to empirically determine which are the
most effective. Additionally, after completion of the
mutation process for a given Java class, we
categorized the untested lines of code into exception
handling, branch statements, method body and return
statements. Finally, our research reveals several
design decisions which can be implemented in future
automated mutation tools to improve their efficiency
for users.

A mutation testing empirical study was conducted
using two versions of three major classes for the Java
backend of the iTrust4 web healthcare application.
For each Java class, we began by maximizing the

2 A mutation operator is a set of instructions for
generating mutants of a particular character.
3 http://ise.gmu.edu/~ofut/mujava/
4 http://agile.csc.ncsu.edu/iTrust/

efficiency of the existing unit test suite by removing
redundant and incorrect tests. Next, the initial
mutation score and associated detail by mutant was
recorded. We then iteratively attempted to write tests
to detect each mutant, one at a time, until every
mutant had been examined. Data, such as mutation
score and mutant status, was recorded after each
iteration. When all mutants had been examined, a
line coverage utility was used to ascertain the
remaining untested lines of code. These lines of code
were then categorized by their language constructs.
The study was conducted using the MuClipse5
mutation testing plug-in for Eclipse. MuClipse was
adapted from the MuJava [12] testing tool.

The remainder of this paper is organized as
follows: Section 2 briefly explains mutation testing
and summarizes other studies that have been
conducted to evaluate its efficacy. Next, Section 3
provides information on MuClipse and its
advancements for the mutation process. Section 4
details the test bed and the procedure used to gather
our data, including terms specific to this study. Then,
Section 5 shows the results, their interpretation, and
the limitations of the study. Finally, Section 6 details
some lessons learned by the gathering of this data
which can be applied to the development of future
automated mutation tools and which can be used by
developers when executing mutation testing in
practice.

2. Background and Related Work

Section 2.1 gives required background
information on mutation testing. Section 2.2
analyzes several related works on this issue.

2.1 Mutation Testing

The first part of mutation testing is to alter the
code under test into several instances, called mutants,
and compile them. Mutation generation and
compiling can be done automatically, using a
mutation engine, or by hand. Each mutant is a copy
of the original program with the exception of one
atomic change. The atomic change is made based
upon a specification embodied in a mutation
operator. The use of atomic changes in mutation
testing is based on two ideas: the Competent
Programmer Hypothesis and the Coupling Effect.
The Competent Programmer Hypothesis states that
developers are generally likely to create a program

5 http://muclipse.sourceforge.net/

that is close to being correct [1]. The Coupling Effect
assumes that a test built to catch an atomic change
will be adequate to catch the ramifications of this
atomic change on the rest of the system [1].

Mutation operators are classified by the language
constructs they are created to alter. Traditionally, the
scope of operators was limited to the method level
[1]. Operators of this type are referred to as
traditional or method-level mutants. For example,
one traditional mutation operator changes one binary
operator (e.g. &&) to another (e.g. ||) to create a fault
variant of the program. Recently, class-level
operators, or operators that test at the object level,
have been developed [1]. Certain class-level
operators in the Java programming language, for
instance, replace method calls within source code
with a similar call to a different method. Class-level
operators take advantage of the object-oriented
features of a given language. They are employed to
expand the range of possible mutation to include
specifications for a given class and inter-class
execution.

The second part of mutation testing is to record
the results of the test suite when it is executed against
each mutant. If the test results of a mutant are
different than the original’s, the mutant is said to be
killed [1], meaning the test case was adequate to
catch the mutation performed. If the test results of a
mutant are the same as the original’s, then the mutant
is said to live [1]. Stubborn mutants are mutants that
cannot be killed due to logical equivalence with the
original code or due to language constructs [4]. A
mutation score is calculated by dividing the number
of killed mutants by the total number of mutants. A
mutation score of 100% is considered to indicate that
the test suite is adequate [10]. However, the
inevitability of stubborn mutants may make a
mutation score of 100% unachievable. In practice,
mutation testing entails creating a test set which will
kill all mutants that can be killed (i.e., are not
stubborn).

2.2 Related Studies

Offut, Ma and Kwon contend, “Research in
mutation testing can be classified into four types of
activities: (1) defining mutation operators, (2)
developing mutation systems, (3) inventing ways to
reduce the cost of mutation analysis, and (4)
experimentation with mutation.” [11]. In this sub-
section, we summarize the research related to the last
item, experimentation with mutation, the body of
knowledge to which our research adds.

Several researchers have investigated the efficacy
of mutation testing. Andrews, et al. [2] chose eight
popular C programs to compare hand-seeded faults to
those generated by automated mutation engines. The
authors found the faults seeded by experienced
developers were harder to catch. The authors also
found that faults conceived by automated mutant
generation were more representative of real world
faults, whereas the faults inserted by hand
underestimate the efficacy of a test suite by
emulating faults that would most likely never happen.

Some researchers have extended the use of
mutation testing to include specification analysis.
Rather than mutating the source code of a program,
specification-based mutation analysis changes the
inputs and outputs of a given executable unit.
Murnane and Reed [9] illustrate that mutation testing
must be verified for efficacy against more traditional
black box techniques which employ this technique,
such as boundary value and equivalence class
partitioning. The authors completed test suites for a
data-vetting and a statistical analysis program using
equivalence class and boundary value analysis testing
techniques. The resulting test cases for these
techniques were then compared to the resulting test
cases from mutation analysis for equivalent tests and
to assess the value of any additional tests that may
have been generated. The case study revealed that
there was only 14-18% equivalence between the test
cases revealed by traditional specification analysis
techniques and those generated by mutation analysis.
This result indicates that performing mutation testing
will reveal many pertinent test cases that traditional
specification techniques will not.

Frankl and Weiss [3] compare mutation testing to
all-uses testing using a set of common C programs,
which contained naturally-occurring faults. All-uses
testing entails generating a test suite to cause and
expect outcomes from every possible path through
the call graph of a given system. The authors concede
that for some programs in their sample population, no
all-uses test suite exists. The results were mixed.
Mutation testing proved to uncover more of the
known faults than did all-uses testing in five of the
nine case studies, but not with a strong statistical
correlation. The authors also find that in several
cases, their tests killed every mutant but did not
detect the naturally-occurring fault, indicating that
high mutation score does not always indicate a high
detection of faults.

Offut et al. [10] also compare mutation and all-
uses testing (in the form of data flow testing), but
perform both on the source code rather than its inputs
and outputs. Their chosen test bed was a set of ten

small (always less than 29 lines of code) Fortran
programs. The authors chose to perform cross-
comparisons of mutation and data-flow scores for
their test suites. After completing mutation testing on
their test suites by killing all non-stubborn mutants,
the test suites achieved a 99% all-uses testing score.
After completing all-uses testing on the same test
suites, the test suites achieved an 89% mutation
score. The authors do not conjecture at what could be
missing in the resultant all-uses tests.

Additionally, to verify the efficacy of each testing
technique, Offut, et al. inserted 60 faults into their
source which they view as representing those faults
that programmers typically make. Mutation testing
revealed on average 92% of the inserted faults in the
ten test programs (revealing 100% of the faults in
five cases) whereas all-uses testing revealed only
76% of inserted faults on average (revealing 100% of
the faults in only two cases). The range of faults
detected for all-uses testing is also significantly wider
(with some results as low as 15%) than that of
mutation testing (with the lowest result at 67%).

Ma et al. [6] conducted two case studies to
determine whether class-level mutants result in a
better test suite. The authors used MuJava to perform
mutation testing on BCEL, a popular byte code
engineering library, and collected data on the number
of mutants produced for both class-level mutation
and method-level mutation with operators known to
be the most prolific at the latter level. The results
revealed that most Java classes will be mutated by at
least one class-level operator, indicating that BCEL
uses many object-oriented features and that class-
level mutation operators are not dependent on each
other.

Additionally, Ma et al. completed the mutation
process for every traditional mutant generated and
ran the resultant test set against the class-level
operators. The outcome demonstrated that at least
five of the mutation operators (IPC, PNC, OMD,
EAM and EMM) resulted in high kill rates (>50%).
These high kill rates indicate that these operators may
not be useful in the mutation process since their
mutants were killed by test sets already written to kill
method-level mutants. The study also revealed that
two class-level operators (EOA and EOC) resulted in
a 0% kill rate, indicating that these operators could
be a positive addition to the method-level operators.
However, the authors concede that the study was
conducted on one sample program, and thus these
results may not be representative.

3. MuClipse

 Offut, Ma and Kwon have produced a Java-based
mutation tool, MuJava [12], which conducts both
automated subtasks of the mutation process in Java
1.4: generating mutants and running tests against
created mutants. In generating mutants, MuJava
provides both method- and class-level mutation
operators. Additionally, developers can choose
which operators will be used to generate mutants and
where mutant source files would be placed. MuJava
requires unit tests in a Java 1.4 class containing
public methods which include the word “test” in their
signature. MuJava stores and displays the return
values from these test methods (any Java primitive)
in the console window during original result
collection and mutant result collection. The mutation
score and live and killed mutant statistics are
displayed at the end of the mutation process.

 The MuJava application provided the base for the
development of MuClipse, an Eclipse6 plug-in.
Eclipse Runtime Configurations, which run in Java
1.4, are provided for both the generation of and the
testing of mutants. In generating mutants, MuClipse
allows the developer to decide which mutant
operators to employ and which classes should be
mutated (see Figure 1). When testing mutants,
MuClipse allows the developer to decide which
class’s mutants are to be tested; which test suite is to
be run against said mutants; and which type of
mutant (class- or method-level) operators should be
run. MuClipse allows developers the choice of using
JUnit7 test cases as well as MuJava test cases when
attempting to kill resultant mutants. JUnit test cases
inherit functionality from an abstract TestCase object
to provide a result of pass, fail or error. MuClipse
stores these results as a boolean true, false or Java
Exception when collecting original results or mutant
results. JUnit is also available in the form of an
Eclipse plug in.

Another major component of the mutation process
is the management of mutants and their statuses.
MuClipse implements an integrated Eclipse View
(see Figure 2) which displays mutants and their
statuses by Java class and mutant type. This View
also contains the overall statistics for live and killed
mutants, and the calculated mutation score.

Some design decisions were made in the MuJava-
to-MuClipse modification to increase the efficiency

6 http://www.eclipse.org
7 http://www.junit.org/index.htm

of MuClipse test execution. Firstly, once a mutant
has been killed, MuClipse does not test it again.
Secondly, MuClipse only gathers the results for the
test case on the original code once and stores them
for comparison during the rest of the mutation
process. Thirdly, MuClipse does not gather test
results for a method within a class that contains no
mutants. Finally, so that developers are not required
to track this information manually, MuClipse stores
live and killed mutant names for a given execution in
a file.

4. Research Method

Section 4.1 gives a step-by-step description of the
procedure used to conduct our research. Next,
Section 4.2 contains information on the design,
requirements and architecture of our test bed, the
iTrust application. Finally, Section 4.3 details the
various terms specific to this study used to classify
mutant results throughout the testing procedure.

4.1 Study Procedure

We conducted an empirical evaluation of mutation
testing on two versions of the main three classes of
the iTrust application. Details on this application
will be provided in the next section. For each class,
class-level and method-level mutants were generated
using all available operators provided by the MuJava
framework (which underlies MuClipse).

To characterize the mutation process and gather
empirical evidence, the following procedure was
followed:

1. Streamline the already-written test suite by

removing redundant or meaningless test cases
and use the TestHelper (described below) class
for s e tup and t ea rdown .

2. Execute the test cases against all generated
mutants (a process provided by MuClipse).
Record the classification (e.g. live or killed) of
each mutant and record the mutation score.
Record all mutants killed by the initial test suite
as DOA. The full classification scheme will be
discussed in Section 4.3.

3. Inspect the next (or first) living mutant as it
appears in the “View Mutants and Results”
control in MuClipse. Attempt to write a test case
which will kill this (and only this) mutant.

4. If this mutant can be killed, proceed to Step 5.
If this mutant cannot be killed due to language
constructs or the need to change the source code,
record it as Stubborn and return to Step 3.

5. Execute the test cases against the remaining
living mutants. Record the mutant in question as
Killed. Record other mutants that are killed by
this test case change as Crossfire.

6. If there are no more living, killable mutants,
stop. Otherwise, proceed to step 3 and repeat.

iTrust utilizes a database management system to

store its data. Since the proper role is required of the
logged-in user to execute different functionalities
provided by the system, we utilized the TestHelper
class which inserted users of a desired role and stored

their database identifier. In this way, the efficiency of
the test suite could be maximized by removing only
the users inserted for a given test, as opposed to
destroying and restructuring the database with every
new scenario.

Additionally, some mutants would cause insertion
of faulty data directly into the database while not
affecting the return value from a given function or
causing an Exception. Mutants of this type had to be
checked using database queries from within the test
itself.

4.2 iTrust Application

iTrust is a web-based healthcare application that

was created by North Carolina State University
graduate students in a Software Testing and
Reliability course in the Fall of 2005. The best
project from the Fall of 2005 was chosen for further
enhancement by the same course in the Fall of 2006.

Figure 1. Selecting Operators in MuClipse

Figure 2. Comparing Mutants to Originals in MuClipse

The motivation for iTrust was to provide an example
project for use in learning the various types of testing
and security measures currently available.

iTrust was enhanced by seven two-person teams
in the Fall 2006 course. All teams were given the
same requirements. We randomly chose two of the
seven teams (which we will call Team A and Team
B) and conducted mutation testing on three classes of
their iTrust framework. We chose the classes of
iTrust which performed the computation for the
framework and dealt directly with the database
management back-end using SQL (Au th ,
Demograph ic s and Transac t ions). The other
classes in the framework act primarily as data
containers and do not perform any computation or
logic. Line counts8 for each Java class in the iTrust
framework for Teams A and B are in Table 1.
Students were instructed to have a minimum of 80%
JUnit statement coverage for each class. We used
their JUnit tests as the initial test suite for our
empirical study. Statement coverage dropped from
80% to being within a range of 25%-70% when the
first step of the procedure was followed.

 iTrust was written in Java 1.5 using a Java Server
Pages (JSP)9 front-end. Because the model for the
application was to include mostly user interface in
the JSP, the three primary classes of the iTrust
framework support the logic and processing,
including database interaction for the iTrust
application. Testing and generation of mutants was
executed using Eclipse v3.1 on an IBM Lenovo
laptop with a 1.69 Ghz processor and 1.5 GB of
RAM running Microsoft Windows XP. Eclipse and
MuClipse were executed using Java 1.5 since the test
bed source code was written to conform to these
standards. iTrust was written to comply with a SQL
back-end and thus was configured to interface with a
locally executing instance of MySQL 5.010.

4.3 Additional Classification Terms

While classifying mutants traditionally contains
the categories killed, living or stubborn [4], we
consider it important not only that a mutant dies, but
when it dies. A mutant which dies on the first
execution of test cases does not yield a new test case,
but this might not be true with a different starting test
set. Mutants that die with this first execution are
called DOA. Additionally, consider a mutant X

8 LoC calculated using NLOC:
http://nloc.sourceforge.net/
9 http://java.sun.com/products/jsp/
10 http://www.mysql.com/

(created by mutation operator a) that the developer
attempts to kill using test case T. Consider that
mutant Y (created by mutation operator b) is also
killed upon the execution of test case T. Possibly the
“two-for-the price-of-one” payoff of test case T may
be an anomaly. Or alternatively, perhaps mutation
operators a and b generate redundant mutants, or
mutants that are often killed by the same test case(s).
Mutants killed by a test case written to kill other
mutants are called Crossfire.

 The MuJava mutation engine (underlying
MuClipse) does not operate on compiled binary Java
classes, but rather can be thought of as using a
regular expression matcher to modify source code
using knowledge and logic pertaining to the
constructs of the Java language itself. Operating on
source code first can lead to two semantically
different expressions within Java being compiled to
the same binary object. For example, if a local
instance of any subclass of j ava . l ang .Ob jec t is
created, but not initialized within a class, the Java
Virtual Machine automatically initializes this
reference to nu l l . Though developers find
automatically initialized variables convenient, the
construct causes the code snippets in Figure 3 to be
logically equivalent. No test case can discern the

difference between a variable which was initialized
to null due to the Java compiler and a variable which
was explicitly initialized to null by the developer,
causing the mutant to be Stubborn.

/ / t he o r ig ina l code
ITrus tUse r l oggedInUse r = nu l l ;

/ / t he mu ta ted code
ITrus tUse r loggedInUse r ;

Figure 3. Logically Equivalent Code

In sum, we use the following additional terms to
classify generated mutants:

• Killed. Mutant which was killed by a test case

which was specifically written to kill it.
• Dead on Arrival (DOA). Mutant that was

killed by the initial test suite.
• Crossfire. Mutant that was killed by a test case

intended to kill a different mutant.
• Stubborn. Mutant that cannot be killed by a test

case due to logical equivalence and language
constructs.

Killed mutants provide the most useful

information: additional, necessary test cases. DOA

mutants could have provided us with test cases if our
initial test suite had been different but might also be
considered to be the easiest to kill since they were
killed by the initial test suite without any focus by the
students on mutation testing. Crossfire mutants
indicate that our tests are efficient at detecting sets of
related errors and may indicate redundant mutants.
An operator that has a history of producing a high
percentage of stubborn mutants may be a candidate
for not being chosen for mutant generation. .

5. Results

 Mutants were classified to better understand the
efficacy of each operator and how their resulting
mutants behave. The data collected yield two
interesting views of the mutation process. Aggregate
classification statistics for mutants of each operator
are detailed by Section 5.1. Next, Section 5.2
describes the lines of code marked as not executed by
the test suite after completion of the mutation
process.

5.1 Classification Statistics

Though some iterations of the mutation process

do not kill any mutants, each iteration classifies a
number of mutants. After mutation testing is
complete for a given Java class, totals for each
operator were calculated for the number of mutants

that were Crossfire, DOA, Killed, and Stubborn (see
Table 2). Descriptions of mutation operators used
within the MuJava framework can be found in [7, 8].

 Of the 1,330 mutants created in total, almost half
(560) were spawned by the operator EAM, with ROR
(185) and AOIS (104) coming in second and third
respectively. By looking at percentages of mutants
created, we can see that the COR, AOIU, COI and
COD operators produced the highest number of
Killed, or useful mutants. We also find that AOIS,
JSI, JID and PCD produced the highest number of
Stubborn, or useless mutants. The traditional
operators AODU, AODS, SOR, LOR, LOD and
ASRS did not produce any mutants for the iTrust
back-end because they mutate language operators
that the chosen classes did not contain (e.g., shift,
unary logic, unary arithmetic). Similarly, the class-
level operators AMC, IHI, IHD, IOD, IOP, IOR, ISI,
ISD, IPC, PNC, PMD, PPD, PCC, OMR, OMD,
OAN, JTI, JTD, EOA and EOC did not produce any
mutants for the iTrust back-end. The operators
beginning with I all deal with inheritance features of
Java, and the operators beginning with O and P all
deal with polymorphism features. The chosen classes
were primarily called upon to perform logic checking
and interaction with the database, and thus do not
employ many of these language features.

Back-end code for most web applications makes
use of conditional operators to implement behavior.
Specifications for a class to perform logic checking
and database interaction cause mutation operators

Pkg Class Team A Team B LoC
itrust Auth 280 299
 AuthenticationException 11 11
 Constants 122 121
 DBManager 171 268
 Demographics 628 544
 Diagnosis 4 n/a
 Records 285 307
 Transactions 123 120
 UserDataException 13 14
itrust.bean DiagnosticInformation 49 49
 Medication 43 43
 OfficeVisit 37 37
 PersonalHealthInformatio 274 560
 TransactionLogRecord 49 49
itrust.users ITrustUser 77 77
 ITrustAdmin 14 17
 ITrustHCP 14 17
 ITrustPatient 82 83
 ITrustUAP 19 20
 Totals 2295 2636

Table 1. Line Counts by Class and Team

effecting conditional operations (COR, COI, COD)
to be significantly more useful in producing
necessary test cases than those operators related to
Java classes or arithmetic (JSI, JID, PCD).

The EAM operator replaced one method call to a
given class with an equivalent method call,
producing a significant anomaly. The coupled nature
of the iTrust class structure yielded many mutants by
this operator. However, the initial test sets created by
both Teams A and B provided simple equivalence
class partitioning, which killed these mutants on first
execution.

5.2 Unexecuted Statements

After mutation testing was complete for a given
class, we executed dJUnit to indicate which lines
were not executed by our final test suites. Each line
of code dJUnit marked as not executed was classified
into one of the following groups.

• Body. Lines that were within the root block of

the body of a given method and not within any of
the other blocks described, except for try blocks
(see below).

• If/Else. Lines that were within any variation of
conditional branches (if, else, else if, and nested
combinations).

• Return. Java r e tu rn statements (usually within

a constructor, getter or setter).
• Catch. Lines that were within the catch section

of a try/catch block. Since most of the code in
iTrust belongs in a try block, only the catch
blocks were counted in this category.

Most lines not executed in the iTrust classes

under test fell into a catch section of a t ry /ca tch
block (see Table 3), corresponding to the fact that
mutation operators for Java Exceptions are in
development [6]. Since no mutants were created
which change, for instance, which Exception is
caught, no test needs to be written to hit the catch
block and therefore the catch block remains not
executed.

A perhaps more disturbing number of lines were
found within individual i f statements and within the
body, indicating sections of code which might more
likely be executed in a real world setting that were
left not executed by the mutation process. The
procedure followed precluded fixing errors in the
original source code, which caused many of these i f
and body instances. When a statement fell after an
erroneous line of code, we could not write a test to
reach that statement, because we could not fix the
error-causing statement before it.

5.3 Limitations

Operator Description Killed Stubborn DOA Crossfire Total
AOIS Insert short-cut arithmetic ops. 9 62 7 26 104
AORB Replace equivalent arithmetic ops. 2 0 3 7 12
COD Delete unary conditional ops. 6 0 32 2 40
COI Insert unary conditional ops. 17 0 66 10 93
COR Replace equivalent binary ops. 15 6 26 5 52
LOI Insert unary logic ops. 1 7 31 20 59
EAM Change method accessor 20 53 345 142 560
JSI Insert static modifier 3 24 0 24 51
JID Remove variable initialization 0 1 2 0 3
PCI Insert type cast operator 4 0 28 9 41
AOIU Insert basic arithmetic ops. 5 1 16 6 28
ROR Replace relational ops. 10 26 99 50 185
PCD Delete type cast operators 0 35 0 38 73
JSD Delete static modifier 0 0 0 1 1
EMM Change method modifier 0 0 0 2 2
PRV Replace reference with equivalent 0 0 0 25 25
JDC Default constructor creation 0 0 1 0 1
Total 92 215 557 365 1330

Table 2. Classification by Operator (Teams A and B)

Our empirical results apply only to the iTrust
application and may not extrapolate to all instances
of mutation analysis. iTrust is a relatively large
academic code base and larger than the software used
in most other mutation testing studies but still small
relative to industrial software. Also, due to the
expensive nature of mutation testing and our iterative
mutation killing study, we limited our test set to the
three classes listed in Section 4.2. Testing all of the
classes of the iTrust framework would yield more
information about the mutation process. Additionally,
the set of mutation operators provided by the MuJava
framework is more inclusive by providing object-
oriented operators, but cannot be determined as being
representative of every possible operator that could
be written. Finally, the expensive nature of the
mutation process precludes us from a more real-
world procedure of fixing source code that leads to
stubborn mutants, which could lead to more insights
about the limitations of the mutation process.

6. Lessons Learned

For the Java back-end of a web application we
find that conditional operators such as COR, COI and
COD provide a substantial number of useful
mutations. Back-end code usually performs logical
and security checks for a web application and these
operators are tailored for this use of code.
Additionally, we find that arithmetic operators are
not as useful because most functions of this type in a
web application are not complicated. Finally, the
object-oriented operators did not provide many
useful mutations for our web application, as the data
hierarchy was straightforward. The correlation
between mutation operator type and functionality of
application reveals that operators should be chosen
which are related to the functions the application
provides.

Crossfire mutants, at first glance, appear to be
useless at producing effective test cases. However, a
Crossfire mutant could produce effective tests if it is
encountered earlier in the mutation process.

Crossfire mutants can be thought of as insurance that
a given set of programming errors is tested.
However, we could possibly reduce the number of
mutants that result in the same test case. Usually, a
single operator produces several mutants from a
single match of a given regular expression within the
source code. Perhaps mutation operators should
generate only one or two variations per match.

A lack of exception-driven mutation operators
seems to indicate failure in the selected set of
operators. However, most of the Exceptions in iTrust
deal with errors possibly caused by the database.
Error handling is certainly a situation where
developers can make mistakes and mutation
operators are in development to reflect this fact [6].

New mutation tools can incorporate design
decisions to reduce redundant testing (see Section 3)
and to automate mutant tracking, but also can include
usage of mutation operators which produces fewer
instances of a given change and which incorporates
Exception mutations.

7. Acknowledgements

Funding for this research was provided by an
IBM Faculty Award. Additionally, we would like to
thank the North Carolina State University RealSearch
group for their helpful comments on the paper.

8. References

[1] R. T. Alexander, J. M. Bieman, S. Ghosh, and J.
Bixia, "Mutation of Java objects," 13th International
Symposium on Software Reliability Engineering, pp.
341-351, Fort Collins, CO USA, 2002.
[2] J. H. Andrews, L. C. Briand, and Y. Labiche, "Is
mutation an appropriate tool for testing
experiments?," Proceedings of the 27th international
conference on Software engineering, pp. 402-411, St.
Louis, MO, USA, 2005.
[3] P. G. Frankl, S. N. Weiss, and C. Hu, "All-uses
vs mutation testing: An experimental comparison of

Team Class catch if/else return body
A Auth 32 9 3 0
 Demographics 28 50 2 69
 Transactions 11 4 0 0
B Auth 28 9 0 5
 Demographics 39 27 0 4
 Trans 11 5 0 0
Totals 149 104 5 78

Table 3. Not Executed Lines by Team and Class

effectiveness," The Journal of Systems & Software,
vol. 38, no. 3, pp. 235-253, 1997.
[4] R. M. Hierons, M. Harman, and S. Danicic,
"Using program slicing to assist in the detection of
equivalent mutants," Software Testing, Verification &
Reliability, vol. 9, no. 4, pp. 233-262, 1999.
[5] IEEE, "IEEE Standard 610.12-1990, IEEE
Standard Glossary of Software Engineering
Terminology," 1990.
[6] Y. S. Ma, M. J. Harrold, and Y. R. Kwon,
"Evaluation of mutation testing for object-oriented
programs," International Conference on Software
Engineering, pp. 869-872, Shanghai, China, 2006.
[7] Y. S. Ma and J. Offut, "Description of Class
Mutation Mutation Operators for Java,"
http://ise.gmu.edu/~ofut/mujava/mutopsClass.pdf,
accessed 4/19/2007.
[8] Y. S. Ma and J. Offut, "Description of Method-
level Mutation Operators for Java,"
http://ise.gmu.edu/~ofut/mujava/mutopsMethod.pdf,
accessed 4/19/2007.
[9] T. Murnane, K. Reed, T. Assoc, and V. Carlton,
"On the effectiveness of mutation analysis as a black
box testing bechnique," Software Engineering
Conference, pp. 12-20, Canberra, ACT, Australia,
2001.
[10] A. J. Offutt, J. Pan, K. Tewary, and T. Zhang,
"An Experimental Evaluation of Data Flow and
Mutation Testing," Software Practice and
Experience, vol. 26, no. 2, pp. 165-176, 1996.
[11] J. Offutt, Y. S. Ma, and Y. R. Kwon, "The
class-level mutants of MuJava," Proceedings of the
2006 International Workshop on Automation of
Software Tesing, pp. 78-84, Shanghai, China 2006.
[12] J. Offutt, Y. S. Ma, and Y. R. Kwon, "An
experimental mutation system for Java," ACM
SIGSOFT Software Engineering Notes, vol. 29, no. 5,
pp. 1-4, 2004.

