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Abstract 

 
Mutation testing is used to assess the fault-finding 

effectiveness of a test suite.  Information provided by 
mutation testing can also be used to guide the 
creation of additional valuable tests and/or to reveal 
faults in the implementation code.  However, 
concerns about the time efficiency of mutation testing 
may prohibit its widespread, practical use.  We 
conducted an empirical study using the MuClipse 
automated mutation testing plug-in for Eclipse on the 
back end of a small web-based application. The first 
objective of our study was to categorize the behavior 
of the mutants generated by selected mutation 
operators during successive attempts to kill the 
mutants.   The results of this categorization can be 
used to inform developers in their mutant operator 
selection to improve the efficiency and effectiveness 
of their mutation testing.  The second outcome of our 
study identified patterns in the implementation code 
that remained untested after attempting to kill all 
mutants. 
 
 
1. Introduction 
 

Mutation testing is a testing methodology in 
which two or more program mutations1 (mutants for 
short) are executed against the same test suite to 
evaluate the ability of the test suite to detect these 
alterations [5]. The mutation testing procedure entails 
adding or modifying test cases until the test suite is 
sufficient to detect all mutants [1]. The post-mutation 

                                                                                                                     
1 A mutation is a computer program that has been 
purposely altered from the intended version to 
evaluate the ability of test cases to detect the 
alteration [5]. 

testing, augmented test suite may reveal latent faults 
and will provide a stronger test suite to detect future 
errors which might be injected.  

The mutation process is computationally 
expensive and inefficient [3]. Most often, mutation 
operators2 produce mutants which demonstrate the 
need to modify the test bed code or the need for more 
test cases [3]. However, some mutation operators 
produce mutants which cannot be detected by a test 
suite, and the developer must manually determine 
these are “false positive” mutants. Additionally, the 
process of adding a new test case will frequently 
detect more than was intended, which brings into 
question the necessity of multiple variations of the 
same mutated statement. 

As a result, empirical data about the behavior of 
the mutants produced by a given mutation operator 
can help us understand the usefulness of the operator 
in a given context.  Our research objective is to 
compare the resultant behavior of mutants produced 
by the set of mutation operators supported in the 
MuJava3 tool to empirically determine which are the 
most effective.  Additionally, after completion of the 
mutation process for a given Java class, we 
categorized the untested lines of code into exception 
handling, branch statements, method body and return 
statements. Finally, our research reveals several 
design decisions which can be implemented in future 
automated mutation tools to improve their efficiency 
for users. 

A mutation testing empirical study was conducted 
using two versions of three major classes for the Java 
backend of the iTrust4 web healthcare application. 
For each Java class, we began by maximizing the 

 
2 A mutation operator is a set of instructions for 
generating mutants of a particular character. 
3 http://ise.gmu.edu/~ofut/mujava/ 
4 http://agile.csc.ncsu.edu/iTrust/ 



efficiency of the existing unit test suite by removing 
redundant and incorrect tests. Next, the initial 
mutation score and associated detail by mutant was 
recorded.  We then iteratively attempted to write tests 
to detect each mutant, one at a time, until every 
mutant had been examined. Data, such as mutation 
score and mutant status, was recorded after each 
iteration.  When all mutants had been examined, a 
line coverage utility was used to ascertain the 
remaining untested lines of code. These lines of code 
were then categorized by their language constructs.  
The study was conducted using the MuClipse5 
mutation testing plug-in for Eclipse.    MuClipse was 
adapted from the MuJava [12] testing tool.   

The remainder of this paper is organized as 
follows: Section 2 briefly explains mutation testing 
and summarizes other studies that have been 
conducted to evaluate its efficacy. Next, Section 3 
provides information on MuClipse and its 
advancements for the mutation process. Section 4 
details the test bed and the procedure used to gather 
our data, including terms specific to this study. Then, 
Section 5 shows the results, their interpretation, and 
the limitations of the study. Finally, Section 6 details 
some lessons learned by the gathering of this data 
which can be applied to the development of future 
automated mutation tools and which can be used by 
developers when executing mutation testing in 
practice. 
 
2. Background and Related Work 
 

Section 2.1 gives required background 
information on mutation testing.  Section 2.2 
analyzes several related works on this issue. 
 
2.1 Mutation Testing 
 

The first part of mutation testing is to alter the 
code under test into several instances, called mutants, 
and compile them. Mutation generation and 
compiling can be done automatically, using a 
mutation engine, or by hand.   Each mutant is a copy 
of the original program with the exception of one 
atomic change.   The atomic change is made based 
upon a specification embodied in a mutation 
operator. The use of atomic changes in mutation 
testing is based on two ideas: the Competent 
Programmer Hypothesis and the Coupling Effect.  
The Competent Programmer Hypothesis states that 
developers are generally likely to create a program 

                                                           
5 http://muclipse.sourceforge.net/ 

that is close to being correct [1]. The Coupling Effect 
assumes that a test built to catch an atomic change 
will be adequate to catch the ramifications of this 
atomic change on the rest of the system [1].  

Mutation operators are classified by the language 
constructs they are created to alter. Traditionally, the 
scope of operators was limited to the method level 
[1]. Operators of this type are referred to as 
traditional or method-level mutants. For example, 
one traditional mutation operator changes one binary 
operator (e.g. &&) to another (e.g. ||) to create a fault 
variant of the program. Recently, class-level 
operators, or operators that test at the object level, 
have been developed [1]. Certain class-level 
operators in the Java programming language, for 
instance, replace method calls within source code 
with a similar call to a different method.  Class-level 
operators take advantage of the object-oriented 
features of a given language. They are employed to 
expand the range of possible mutation to include 
specifications for a given class and inter-class 
execution. 

The second part of mutation testing is to record 
the results of the test suite when it is executed against 
each mutant. If the test results of a mutant are 
different than the original’s, the mutant is said to be 
killed [1], meaning the test case was adequate to 
catch the mutation performed. If the test results of a 
mutant are the same as the original’s, then the mutant 
is said to live [1].  Stubborn mutants are mutants that 
cannot be killed due to logical equivalence with the 
original code or due to language constructs [4]. A 
mutation score is calculated by dividing the number 
of killed mutants by the total number of mutants. A 
mutation score of 100% is considered to indicate that 
the test suite is adequate [10].  However, the 
inevitability of stubborn mutants may make a 
mutation score of 100% unachievable.  In practice, 
mutation testing entails creating a test set which will 
kill all mutants that can be killed (i.e., are not 
stubborn). 
 
2.2  Related Studies 
 

Offut, Ma and Kwon contend, “Research in 
mutation testing can be classified into four types of 
activities: (1) defining mutation operators, (2) 
developing mutation systems, (3) inventing ways to 
reduce the cost of mutation analysis, and (4) 
experimentation with mutation.” [11].  In this sub-
section, we summarize the research related to the last 
item, experimentation with mutation, the body of 
knowledge to which our research adds. 



Several researchers have investigated the efficacy 
of mutation testing.  Andrews, et al. [2] chose eight 
popular C programs to compare hand-seeded faults to 
those generated by automated mutation engines. The 
authors found the faults seeded by experienced 
developers were harder to catch.  The authors also 
found that faults conceived by automated mutant 
generation were more representative of real world 
faults, whereas the faults inserted by hand 
underestimate the efficacy of a test suite by 
emulating faults that would most likely never happen. 

Some researchers have extended the use of 
mutation testing to include specification analysis. 
Rather than mutating the source code of a program, 
specification-based mutation analysis changes the 
inputs and outputs of a given executable unit. 
Murnane and Reed [9] illustrate that mutation testing 
must be verified for efficacy against more traditional 
black box techniques which employ this technique, 
such as boundary value and equivalence class 
partitioning. The authors completed test suites for a 
data-vetting and a statistical analysis program using 
equivalence class and boundary value analysis testing 
techniques. The resulting test cases for these 
techniques were then compared to the resulting test 
cases from mutation analysis for equivalent tests and 
to assess the value of any additional tests that may 
have been generated. The case study revealed that 
there was only 14-18% equivalence between the test 
cases revealed by traditional specification analysis 
techniques and those generated by mutation analysis. 
This result indicates that performing mutation testing 
will reveal many pertinent test cases that traditional 
specification techniques will not. 

Frankl and Weiss [3] compare mutation testing to 
all-uses testing using a set of common C programs, 
which contained naturally-occurring faults. All-uses 
testing entails generating a test suite to cause and 
expect outcomes from every possible path through 
the call graph of a given system. The authors concede 
that for some programs in their sample population, no 
all-uses test suite exists. The results were mixed. 
Mutation testing proved to uncover more of the 
known faults than did all-uses testing in five of the 
nine case studies, but not with a strong statistical 
correlation. The authors also find that in several 
cases, their tests killed every mutant but did not 
detect the naturally-occurring fault, indicating that 
high mutation score does not always indicate a high 
detection of faults. 

Offut et al. [10] also compare mutation and all-
uses testing (in the form of data flow testing), but 
perform both on the source code rather than its inputs 
and outputs. Their chosen test bed was a set of ten 

small (always less than 29 lines of code) Fortran 
programs. The authors chose to perform cross-
comparisons of mutation and data-flow scores for 
their test suites. After completing mutation testing on 
their test suites by killing all non-stubborn mutants, 
the test suites achieved a 99% all-uses testing score. 
After completing all-uses testing on the same test 
suites, the test suites achieved an 89% mutation 
score. The authors do not conjecture at what could be 
missing in the resultant all-uses tests.  

Additionally, to verify the efficacy of each testing 
technique, Offut, et al. inserted 60 faults into their 
source which they view as representing those faults 
that programmers typically make. Mutation testing 
revealed on average 92% of the inserted faults in the 
ten test programs (revealing 100% of the faults in 
five cases) whereas all-uses testing revealed only 
76% of inserted faults on average (revealing 100% of 
the faults in only two cases). The range of faults 
detected for all-uses testing is also significantly wider 
(with some results as low as 15%) than that of 
mutation testing (with the lowest result at 67%). 

Ma et al. [6] conducted two case studies to 
determine whether class-level mutants result in a 
better test suite. The authors used MuJava to perform 
mutation testing on BCEL, a popular byte code 
engineering library, and collected data on the number 
of mutants produced for both class-level mutation 
and method-level mutation with operators known to 
be the most prolific at the latter level. The results 
revealed that most Java classes will be mutated by at 
least one class-level operator, indicating that BCEL 
uses many object-oriented features and that class-
level mutation operators are not dependent on each 
other.  

Additionally, Ma et al. completed the mutation 
process for every traditional mutant generated and 
ran the resultant test set against the class-level 
operators. The outcome demonstrated that at least 
five of the mutation operators (IPC, PNC, OMD, 
EAM and EMM) resulted in high kill rates (>50%). 
These high kill rates indicate that these operators may 
not be useful in the mutation process since their 
mutants were killed by test sets already written to kill 
method-level mutants. The study also revealed that 
two class-level operators (EOA and EOC) resulted in 
a 0% kill rate, indicating that these operators could 
be a positive addition to the method-level operators. 
However, the authors concede that the study was 
conducted on one sample program, and thus these 
results may not be representative. 



 
3. MuClipse 
 

 Offut, Ma and Kwon have produced a Java-based 
mutation tool, MuJava [12], which conducts both 
automated subtasks of the mutation process in Java 
1.4: generating mutants and running tests against 
created mutants.  In generating mutants, MuJava 
provides both method- and class-level mutation 
operators.  Additionally, developers can choose 
which operators will be used to generate mutants and 
where mutant source files would be placed.  MuJava 
requires unit tests in a Java 1.4 class containing 
public methods which include the word “test” in their 
signature. MuJava stores and displays the return 
values from these test methods (any Java primitive) 
in the console window during original result 
collection and mutant result collection.  The mutation 
score and live and killed mutant statistics are 
displayed at the end of the mutation process. 

 The MuJava application provided the base for the 
development of MuClipse, an Eclipse6 plug-in.  
Eclipse Runtime Configurations, which run in Java 
1.4, are provided for both the generation of and the 
testing of mutants. In generating mutants, MuClipse 
allows the developer to decide which mutant 
operators to employ and which classes should be 
mutated (see Figure 1). When testing mutants, 
MuClipse allows the developer to decide which 
class’s mutants are to be tested; which test suite is to 
be run against said mutants; and which type of 
mutant (class- or method-level) operators should be 
run.  MuClipse allows developers the choice of using 
JUnit7 test cases as well as MuJava test cases when 
attempting to kill resultant mutants. JUnit test cases 
inherit functionality from an abstract TestCase object 
to provide a result of pass, fail or error.  MuClipse 
stores these results as a boolean true, false or Java 
Exception when collecting original results or mutant 
results.  JUnit is also available in the form of an 
Eclipse plug in.  

Another major component of the mutation process 
is the management of mutants and their statuses. 
MuClipse implements an integrated Eclipse View 
(see Figure 2) which displays mutants and their 
statuses by Java class and mutant type. This View 
also contains the overall statistics for live and killed 
mutants, and the calculated mutation score. 

Some design decisions were made in the MuJava-
to-MuClipse modification to increase the efficiency 

                                                           
6 http://www.eclipse.org 
7 http://www.junit.org/index.htm 

of MuClipse test execution. Firstly, once a mutant 
has been killed, MuClipse does not test it again. 
Secondly, MuClipse only gathers the results for the 
test case on the original code once and stores them 
for comparison during the rest of the mutation 
process. Thirdly, MuClipse does not gather test 
results for a method within a class that contains no 
mutants. Finally, so that developers are not required 
to track this information manually, MuClipse stores 
live and killed mutant names for a given execution in 
a file.  

 
4. Research Method 
 

Section 4.1 gives a step-by-step description of the 
procedure used to conduct our research. Next, 
Section 4.2 contains information on the design, 
requirements and architecture of our test bed, the 
iTrust application. Finally, Section 4.3 details the 
various terms specific to this study used to classify 
mutant results throughout the testing procedure.  

 
4.1 Study Procedure 
 

We conducted an empirical evaluation of mutation 
testing on two versions of the main three classes of 
the iTrust application.  Details on this application 
will be provided in the next section.  For each class, 
class-level and method-level mutants were generated 
using all available operators provided by the MuJava 
framework (which underlies MuClipse).  

To characterize the mutation process and gather 
empirical evidence, the following procedure was 
followed: 

 
1. Streamline the already-written test suite by 

removing redundant or meaningless test cases 
and use the TestHelper (described below) class 
for s e tup  and t ea rdown . 

2. Execute the test cases against all generated 
mutants (a process provided by MuClipse).  
Record the classification (e.g. live or killed) of 
each mutant and record the mutation score.  
Record all mutants killed by the initial test suite 
as DOA.  The full classification scheme will be 
discussed in Section 4.3.     



3. Inspect the next (or first) living mutant as it 
appears in the “View Mutants and Results” 
control in MuClipse. Attempt to write a test case 
which will kill this (and only this) mutant. 

4. If this mutant can be killed, proceed to Step 5.   
If this mutant cannot be killed due to language 
constructs or the need to change the source code, 
record it as Stubborn and return to Step 3.  

5. Execute the test cases against the remaining 
living mutants. Record the mutant in question as 
Killed. Record other mutants that are killed by 
this test case change as Crossfire. 

6. If there are no more living, killable mutants, 
stop. Otherwise, proceed to step 3 and repeat. 

 
iTrust utilizes a database management system to 

store its data. Since the proper role is required of the 
logged-in user to execute different functionalities 
provided by the system, we utilized the TestHelper 
class which inserted users of a desired role and stored 

their database identifier. In this way, the efficiency of 
the test suite could be maximized by removing only 
the users inserted for a given test, as opposed to 
destroying and restructuring the database with every 
new scenario. 

Additionally, some mutants would cause insertion 
of faulty data directly into the database while not 
affecting the return value from a given function or 
causing an Exception. Mutants of this type had to be 
checked using database queries from within the test 
itself. 
 
4.2  iTrust Application 

 
iTrust is a web-based healthcare application that 

was created by North Carolina State University 
graduate students in a Software Testing and 
Reliability course in the Fall of 2005. The best 
project from the Fall of 2005 was chosen for further 
enhancement by the same course in the Fall of 2006. 

 
Figure 1. Selecting Operators in MuClipse 

 

 
Figure 2. Comparing Mutants to Originals in MuClipse 

 



The motivation for iTrust was to provide an example 
project for use in learning the various types of testing 
and security measures currently available.   

iTrust was enhanced by seven two-person teams 
in the Fall 2006 course.  All teams were given the 
same requirements. We randomly chose two of the 
seven teams (which we will call Team A and Team 
B) and conducted mutation testing on three classes of 
their iTrust framework.  We chose the classes of 
iTrust which performed the computation for the 
framework and dealt directly with the database 
management back-end using SQL (Au th , 
Demograph ic s  and Transac t ions ).  The other 
classes in the framework act primarily as data 
containers and do not perform any computation or 
logic.  Line counts8 for each Java class in the iTrust 
framework for Teams A and B are in Table 1. 
Students were instructed to have a minimum of 80% 
JUnit statement coverage for each class.  We used 
their JUnit tests as the initial test suite for our 
empirical study. Statement coverage dropped from 
80% to being within a range of 25%-70% when the 
first step of the procedure was followed. 

 iTrust was written in Java 1.5 using a Java Server 
Pages (JSP)9 front-end. Because the model for the 
application was to include mostly user interface in 
the JSP, the three primary classes of the iTrust 
framework support the logic and processing, 
including database interaction for the iTrust 
application. Testing and generation of mutants was 
executed using Eclipse v3.1 on an IBM Lenovo 
laptop with a 1.69 Ghz processor and 1.5 GB of 
RAM running Microsoft Windows XP. Eclipse and 
MuClipse were executed using Java 1.5 since the test 
bed source code was written to conform to these 
standards. iTrust was written to comply with a SQL 
back-end and thus was configured to interface with a 
locally executing instance of MySQL 5.010. 
 
4.3  Additional Classification Terms 
 

While classifying mutants traditionally contains 
the categories killed, living or stubborn [4], we 
consider it important not only that a mutant dies, but  
when it dies. A mutant which dies on the first 
execution of test cases does not yield a new test case, 
but this might not be true with a different starting test 
set. Mutants that die with this first execution are 
called DOA. Additionally, consider a mutant X 
                                                           
8 LoC calculated using NLOC: 
http://nloc.sourceforge.net/ 
9 http://java.sun.com/products/jsp/ 
10 http://www.mysql.com/ 

(created by mutation operator a) that the developer 
attempts to kill using test case T. Consider that 
mutant Y (created by mutation operator b) is also 
killed upon the execution of test case T.  Possibly the 
“two-for-the price-of-one” payoff of test case T may 
be an anomaly. Or alternatively, perhaps mutation 
operators a and b generate redundant mutants, or 
mutants that are often killed by the same test case(s).  
Mutants killed by a test case written to kill other 
mutants are called Crossfire.  

 The MuJava mutation engine (underlying 
MuClipse) does not operate on compiled binary Java 
classes, but rather can be thought of as using a 
regular expression matcher to modify source code 
using knowledge and logic pertaining to the 
constructs of the Java language itself. Operating on 
source code first can lead to two semantically 
different expressions within Java being compiled to 
the same binary object. For example, if a local 
instance of any subclass of j ava . l ang .Ob jec t  is 
created, but not initialized within a class, the Java 
Virtual Machine automatically initializes this 
reference to nu l l . Though developers find 
automatically initialized variables convenient, the 
construct causes the code snippets in Figure 3 to be 
logically equivalent. No test case can discern the 

difference between a variable which was initialized 
to null due to the Java compiler and a variable which 
was explicitly initialized to null by the developer, 
causing the mutant to be Stubborn. 

/ / t he  o r ig ina l  code  
ITrus tUse r  l oggedInUse r  =  nu l l ;  
 
/ / t he  mu ta ted  code  
ITrus tUse r  loggedInUse r ; 

Figure 3.  Logically Equivalent Code 

In sum, we use the following additional terms to 
classify generated mutants: 

 
• Killed.  Mutant which was killed by a test case 

which was specifically written to kill it. 
• Dead on Arrival (DOA).  Mutant that was 

killed by the initial test suite.    
• Crossfire.  Mutant that was killed by a test case 

intended to kill a different mutant.    
• Stubborn.  Mutant that cannot be killed by a test 

case due to logical equivalence and language 
constructs. 

 
Killed mutants provide the most useful 

information: additional, necessary test cases. DOA 



mutants could have provided us with test cases if our 
initial test suite had been different but might also be 
considered to be the easiest to kill since they were 
killed by the initial test suite without any focus by the 
students on mutation testing. Crossfire mutants 
indicate that our tests are efficient at detecting sets of 
related errors and may indicate redundant mutants. 
An operator that has a history of producing a high 
percentage of stubborn mutants may be a candidate 
for not being chosen for mutant generation.     .  

 
5. Results 
 

 Mutants were classified to better understand the 
efficacy of each operator and how their resulting 
mutants behave. The data collected yield two 
interesting views of the mutation process. Aggregate 
classification statistics for mutants of each operator 
are detailed by Section 5.1. Next, Section 5.2 
describes the lines of code marked as not executed by 
the test suite after completion of the mutation 
process. 

 
5.1 Classification Statistics 

 
Though some iterations of the mutation process 

do not kill any mutants, each iteration classifies a 
number of mutants. After mutation testing is 
complete for a given Java class, totals for each 
operator were calculated for the number of mutants 

that were Crossfire, DOA, Killed, and Stubborn (see 
Table 2). Descriptions of mutation operators used 
within the MuJava framework can be found in [7, 8].  

 Of the 1,330 mutants created in total, almost half 
(560) were spawned by the operator EAM, with ROR 
(185) and AOIS (104) coming in second and third 
respectively. By looking at percentages of mutants 
created, we can see that the COR, AOIU, COI and 
COD operators produced the highest number of 
Killed, or useful mutants. We also find that AOIS, 
JSI, JID and PCD produced the highest number of 
Stubborn, or useless mutants.  The traditional 
operators AODU, AODS, SOR, LOR, LOD and 
ASRS did not produce any mutants for the iTrust 
back-end because they mutate language operators 
that the chosen classes did not contain (e.g., shift, 
unary logic, unary arithmetic). Similarly, the class-
level operators AMC, IHI, IHD, IOD, IOP, IOR, ISI, 
ISD, IPC, PNC, PMD, PPD, PCC, OMR, OMD, 
OAN, JTI, JTD, EOA and EOC did not produce any 
mutants for the iTrust back-end. The operators 
beginning with I all deal with inheritance features of 
Java, and the operators beginning with O and P all 
deal with polymorphism features. The chosen classes 
were primarily called upon to perform logic checking 
and interaction with the database, and thus do not 
employ many of these language features. 

Back-end code for most web applications makes 
use of conditional operators to implement behavior. 
Specifications for a class to perform logic checking 
and database interaction cause mutation operators 

Pkg Class Team A Team B LoC 
itrust Auth 280 299 
 AuthenticationException 11 11 
 Constants 122 121 
 DBManager 171 268 
 Demographics 628 544 
 Diagnosis 4 n/a
 Records 285 307 
 Transactions 123 120 
 UserDataException 13 14 
itrust.bean DiagnosticInformation 49 49 
 Medication 43 43 
 OfficeVisit 37 37 
 PersonalHealthInformatio 274 560 
 TransactionLogRecord 49 49 
itrust.users ITrustUser 77 77 
 ITrustAdmin 14 17 
 ITrustHCP 14 17 
 ITrustPatient 82 83 
 ITrustUAP 19 20 
 Totals 2295 2636 

Table 1. Line Counts by Class and Team 



effecting conditional operations (COR, COI, COD) 
to be significantly more useful in producing 
necessary test cases than those operators related to 
Java classes or arithmetic (JSI, JID, PCD). 

The EAM operator replaced one method call to a 
given class with an equivalent method call, 
producing a significant anomaly. The coupled nature 
of the iTrust class structure yielded many mutants by 
this operator. However, the initial test sets created by 
both Teams A and B provided simple equivalence 
class partitioning, which killed these mutants on first 
execution. 

  
5.2 Unexecuted Statements 
 

After mutation testing was complete for a given 
class, we executed dJUnit to indicate which lines 
were not executed by our final test suites. Each line 
of code dJUnit marked as not executed was classified 
into one of the following groups. 

 
• Body.  Lines that were within the root block of 

the body of a given method and not within any of 
the other blocks described, except for try blocks 
(see below). 

• If/Else.  Lines that were within any variation of 
conditional branches (if, else, else if, and nested 
combinations). 

• Return. Java r e tu rn  statements (usually within 

a constructor, getter or setter). 
• Catch.  Lines that were within the catch section 

of a try/catch block. Since most of the code in 
iTrust belongs in a try block, only the catch 
blocks were counted in this category. 
 
Most lines not executed in the iTrust classes 

under test fell into a catch section of a t ry /ca tch  
block (see Table 3), corresponding to the fact that 
mutation operators for Java Exceptions are in 
development [6]. Since no mutants were created 
which change, for instance, which Exception is 
caught, no test needs to be written to hit the catch 
block and therefore the catch block remains not 
executed.  

A perhaps more disturbing number of lines were 
found within individual i f  statements and within the 
body, indicating sections of code which might more 
likely be executed in a real world setting that were 
left not executed by the mutation process. The 
procedure followed precluded fixing errors in the 
original source code, which caused many of these i f  
and body  instances. When a statement fell after an 
erroneous line of code, we could not write a test to 
reach that statement, because we could not fix the 
error-causing statement before it. 
 
5.3 Limitations 
 

Operator Description Killed Stubborn DOA Crossfire Total 
AOIS Insert short-cut arithmetic ops. 9 62 7 26 104 
AORB Replace equivalent arithmetic ops. 2 0 3 7 12 
COD Delete unary conditional ops. 6 0 32 2 40 
COI Insert unary conditional ops. 17 0 66 10 93 
COR Replace equivalent binary ops. 15 6 26 5 52 
LOI Insert unary logic ops. 1 7 31 20 59 
EAM Change method accessor 20 53 345 142 560 
JSI Insert static modifier 3 24 0 24 51 
JID Remove variable initialization 0 1 2 0 3 
PCI Insert type cast operator 4 0 28 9 41 
AOIU Insert basic arithmetic ops. 5 1 16 6 28 
ROR Replace relational ops. 10 26 99 50 185 
PCD Delete type cast operators 0 35 0 38 73 
JSD Delete static modifier 0 0 0 1 1 
EMM Change method modifier 0 0 0 2 2 
PRV Replace reference with equivalent 0 0 0 25 25 
JDC Default constructor creation 0 0 1 0 1 
Total  92 215 557 365 1330 

Table 2. Classification by Operator (Teams A and B) 



Our empirical results apply only to the iTrust 
application and may not extrapolate to all instances 
of mutation analysis.  iTrust is a relatively large 
academic code base and larger than the software used 
in most other mutation testing studies but still small 
relative to industrial software. Also, due to the 
expensive nature of mutation testing and our iterative 
mutation killing study, we limited our test set to the 
three classes listed in Section 4.2. Testing all of the 
classes of the iTrust framework would yield more 
information about the mutation process. Additionally, 
the set of mutation operators provided by the MuJava 
framework is more inclusive by providing object-
oriented operators, but cannot be determined as being 
representative of every possible operator that could 
be written. Finally, the expensive nature of the 
mutation process precludes us from a more real-
world procedure of fixing source code that leads to 
stubborn mutants, which could lead to more insights 
about the limitations of the mutation process. 
 
6. Lessons Learned 
 

For the Java back-end of a web application we 
find that conditional operators such as COR, COI and 
COD provide a substantial number of useful 
mutations. Back-end code usually performs logical 
and security checks for a web application and these 
operators are tailored for this use of code. 
Additionally, we find that arithmetic operators are 
not as useful because most functions of this type in a 
web application are not complicated. Finally, the 
object-oriented operators did not provide many 
useful mutations for our web application, as the data 
hierarchy was straightforward. The correlation 
between mutation operator type and functionality of 
application reveals that operators should be chosen 
which are related to the functions the application 
provides.  

Crossfire mutants, at first glance, appear to be 
useless at producing effective test cases. However, a 
Crossfire mutant could produce effective tests if it is 
encountered earlier in the mutation process.  

Crossfire mutants can be thought of as insurance that 
a given set of programming errors is tested. 
However, we could possibly reduce the number of 
mutants that result in the same test case. Usually, a 
single operator produces several mutants from a 
single match of a given regular expression within the 
source code.  Perhaps mutation operators should 
generate only one or two variations per match. 

A lack of exception-driven mutation operators 
seems to indicate failure in the selected set of 
operators.  However, most of the Exceptions in iTrust 
deal with errors possibly caused by the database. 
Error handling is certainly a situation where 
developers can make mistakes and mutation 
operators are in development to reflect this fact [6]. 

New mutation tools can incorporate design 
decisions to reduce redundant testing (see Section 3) 
and to automate mutant tracking, but also can include 
usage of mutation operators which produces fewer 
instances of a given change and which incorporates 
Exception mutations. 
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