
Towards Improved Security Criteria for Certification of
Electronic Health Record Systems

Andrew Austin

andrew_austin@ncsu.edu

Ben Smith
North Carolina State University

890 Oval Drive
Raleigh, NC 27695-8206 USA

+1 (919) 515-7926

ben_smith@ncsu.edu

Laurie Williams

laurie_williams@ncsu.edu

ABSTRACT
The Certification Commission for Health Information
Technology (CCHIT) is an electronic health record certification
organization in the United States. In 2009, CCHIT’s
comprehensive criteria were augmented with security criteria
that define additional functional security requirements. The goal
of this research is to illustrate the importance of requiring
misuse cases in certification standards, such as CCHIT, by
demonstrating the implementation bugs in an open source
healthcare IT application. We performed an initial evaluation
of an open source electronic health record system, OpenEMR,
using an automated static analysis tool and a penetration-testing
tool. We were able to discover implementation bugs latent in the
application, ranging from cross-site scripting to insecure
cryptographic algorithms. Our findings stress the importance
that certification security criteria should focus on
implementation bugs as well as design flaws. Based upon our
findings, we recommend that CCHIT be augmented with a set of
misuse cases that check for specific threats against EMR
systems and thereby improve one aspect of the certification
process.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection.

General Terms
Security, Verification, Measurement.

Keywords
CCHIT, Security, Software Quality, Healthcare, EHR, Web
Application, Static Analysis, Penetration Testing

1. INTRODUCTION
The Certification Commission for Health Information
Technology (CCHIT) is a nonprofit organization founded in
2004 to certify electronic health record (EHR) systems in the

United States. CCHIT maintains and periodically publishes
criteria that are necessary for obtaining certification for both
ambulatory (outpatient) and inpatient EHR systems. The
purpose of CCHIT certification is to confirm that certified EHR
systems maintain a minimum level of correctness, reliability,
security, and interoperability. These characteristics are known as
software quality factors [1].

In this research, we focus on one software quality factor,
security, because of the inherent requirement of privacy
associated with the sensitive and personal information contained
within EHRs. In the United States, the American Recovery and
Reinvestment Act of 2009 (ARRA) provides monetary
incentives to medical providers for using EHR systems rather
than paper counterparts [2]. Since 2006, the U.S. Department of
Health and Human Services (HSS) has designated CCHIT as a
Recognized Certification Body [3]. CCHIT is currently
modifying its criteria to fullfill the ARRA defined requirements
and is working closely with HSS, the HIT Policy Committee,
and the Office of the National Coordinator for Health
Information Technology to influence national EHR certification
policy. In October 2009, CCHIT augmented its certification
criteria with additional security criteria and provided
corresponding black box test scripts1. The security criteria
provide specific requirements intended to establish a minimum
level of securty of an EHR system. The test scripts provide
step-by-step black box directions to be manually executed in an
effort to ensure these criteria are met.

McGraw divides security faults into two important groups:
design flaws, which are high-level problems associated with the
architecture of the software; and implementation bugs, which
are code-level software problems [4]. Security faults from each
group generally occur with the same frequency as the other in
any given software project [4]. After analyzing the test scripts
and the associated security criteria, we have determined that the
CCHIT security criteria only address some design flaws and
ignore possible implementation bugs completely. For example,
one CCHIT criteria states that "When passwords are used, the
system shall support case-sensitive passwords that contain
typeable alpha-numeric characters in support of ISO-
646/ECMA-6 (aka US ASCII)." Another CCHIT security
criteria states that "[t]he system shall provide the ability for
authorized administrators to assign restrictions or privileges to
users/groups". None of the other 54 non-documentation related

1http://www.cchit.org/sites/all/files/CCHIT%20Certified%20201

1%20Security%20Test%20Script%2020091019.pdf

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SEHC’10, May 3–4, 2010, Cape Town, South Africa.
Copyright 2010 ACM 978-1-60558-973-2…$10.00.

CCHIT security criteria test for any potential implementation
bugs.

The goal of this research is to illustrate the importance of
requiring misuse cases in certification standards, such as
CCHIT, by demonstrating the implementation bugs in an open
source healthcare IT application. In this paper, we present the
results of our initial evaluation of OpenEMR2, an open source
EHR application that is seeking CCHIT certification. Our
implementation level evaluation consists of analyzing the results
of two web application security tools: IBM's Rational AppScan3,
which performs automated penetration testing; and Fortify 3604,
which performs security-focused static analysis.

The rest of the paper is organized as follows. Section 2 describes
background pertaining to our paper. Section 3 outlines our
methodology. Section 4 describes our results. Section 5
discusses some limitations with our approach. Section 6
provides a summary of our conclusions.

2. BACKGROUND
This section defines several key terms that are useful throughout
the reading of our paper.
An electronic health record is a collection of medical
information about individual patients and populations stored in
an electronic manner, which may contain anything from a
patient’s home address and social security number to the fact
that a patient has been diagnosed with a certain disease [5].

Static analysis examines software in an abstract fashion by
looking at the code without executing it [6]. This examination
can be performed by evaluating either source code, machine
code, or object code of an application to obtain a list of potential
faults found within the source. Static analysis can be done
manually, or with the help of automated tools. Since
programming languages are all quite different, a variety of tools
are commonly used, although many modern tools provide
support for a range of languages. Unfortunately, these tools are
not perfect and they sometimes incorrectly label code as
containing a fault. This mislabeling is called a false positive, as
opposed to a true postive, when faults are correctly identified.
Therefore, developers must manually examine each potential
fault reported by these tools in order to determine if they are
false positives. We call potential faults that have security
implications potential vulnerabilities.

Penetration testing is a process in which a set of malicious tests
are created to ensure that a software system does not violate any
of the security policy's requirements [7]. Penetration testing
asks that the tester "think like an attacker" and devise test cases
which try to break the system's integrity by exposing
vulnerabilities such as SQL injection, cross-site scripting, cross-
site request forgeries, and error message information leakage.

Application security is frequently assessed and specified using
misuse cases [8]. Similar to use cases, misuse cases specify
"negative" use cases, that is: behavior that is not wanted in the
proposed system. Examples of misuse cases include an
unregistered user attempting to access the system; a patient

2 http://www.oemr.org
3 http://www-01.ibm.com/software/awdtools/appscan/
4 http://www.fortify.com/products/fortify-360/

trying to steal another patient's records; or a healthcare
administrator trying to steal a patient's personal information.
Misuse cases cause developers to ask questions such as "Who
should have access to a patient's records?" as well as "What
parts of a doctor's personal information should be available to
patients?" Such misuse cases can then aid in the creation of
specific and testable security requirements [8].

3. METHOD
This section describes our methodology for selecting and
evaluating the target system OpenEMR. We performed the
evaluation using Windows Vista Business, Service Pack 2, on a
virtual machine with a 2.65Ghz Intel Core Duo and 1.00GB of
RAM. OpenEMR was configured to run using Apache 2.2,
MySQL v5.1.8, and PHP v5.2.11.

3.1 Subject Selection
OpenEMR is an open source EHR system licensed under the
GPL5. In June 2009, OpenEMR was listed as one of the top ten
community based open source health care projects, according to
Black Duck Software6. The project has a community of 17
contributing developers7 and at least 11 companies providing
commercial support within the United States8. OpenEMR is also
actively pursing CCHIT certification9. These facts make
OpenEMR an ideal candidate to evaluate because of the ease in
which one can access both the source code and support
resources. Table 1 lists some additional characteristics of
OpenEMR.

Table 1. Characteristics of OpenEMR

Language PHP

Version Evaluated 3.1.0
(8/29/2009)

Lines of Code (counted by
CLOC1.0810) 277,702

3.2 Static Analysis
We performed automated static analysis on OpenEMR using the
static analysis tool Fortify 360 v5.7. Fortify 360 is a tool focused
on security and is able to analyze a variety of languages,
including both PHP and Java, which is why it was selected over
other static analysis tools. The application was analyzed with the
options "Show me all issues that may have security
implications" and "No, I don't want to see code quality issues" to
only detect potential vulnerabilites. Once the automated analysis
was completed, two researchers independently examined each
potential vulnerability and its corresponding source code to
classify it as either a true positive or a false positive. Once each
potential vulnerability was independently categorized, the two

5 http://www.gnu.org/licenses/gpl.html
6http://www.marketwire.com/press-release/Black-Duck-

Software-1002070.html
7 http://sourceforge.net/project/memberlist.php?group_id=60081
8http://www.openmedsoftware.org/wiki/OpenEMR_Commercial

_Help
9http://www.openmedsoftware.org/wiki/OpenEMR_Certificatio

n
10 http://cloc.sourceforge.net/

researchers compared their findings. In the event of a
disagreement, the researchers examined the potential
vulnerability's source together and debated their opinion until a
consensus was reached on the validity of each potential
vulnerability. Once this consensus was reached, researchers
compared the vulnerability against the CCHIT security test
scripts to assess whether a test script could have surfaced the
identified vulnerability.

Figure 1 presents an example of a SQL injection vulnerability
(bolded) that Fortify 360 detected and labeled as "SQL Injection
(Input Validation and Representation, Data Flow)	
 ". Figure 1 is
an example of a static analysis true positive.

<?
 $name = $_POST[‘name’];
 $query = “SELECT id, amount FROM users
WHERE name = ‘$name’”;
 $result = mysql_query($query);
?>

Figure 1. SQL Injection Example True Positive (PHP)
Figure 2 shows an example of what Fortify 360 labeled (line
bolded) as a 	
 "Password in Comment – Hardcoded passwords
can compromise security in a way that cannot be easily
remedied." Figure 2 is a false positive because there is no
hardcoded password contained within the code comments,
instead the tool simply detects the usage of the word 'password'
in the code comments.

") VALUES (" .
 "'', " .
// username
 "'', " .
// password
Figure 2. SQL Injection Example False Positive (PHP)

3.3 Automated Penetration Testing
To conduct automated penetration testing, we used IBM
Rational AppScan v7.8. Rational AppScan performs security
testing of web applications, regardless of implementation
language or platform. As with the Fortify analysis, two
researchers independently examined each potential vulnerability
and its corresponding source code to classify it as either a true
positive or a false positive. Once each alert was independently
categorized, the two researchers compared their findings. In the
event of a disagreement, the researchers examined the potential
vulnerability’s source together and debated their opinion until a
consensus was reached.

AppScan was set to scan starting from the OpenEMR’s login
page. AppScan allows the tester to configure a login policy,
which essentially consists of a series of recorded HTTP
exchanges to “teach” the tool how to gain authorized access to
the system. We configured AppScan to check for “Application
Only” tests, which excludes “Infrastructure Tests,” which are
targeted directly at specific application servers or frameworks,
such as Apache Tomcat or Wordpress. We informed AppScan
prior to the scan that the application under test was written using
PHP, and used MySQL on the backend.

Although AppScan uncovered security issues with OpenEMR,
such as the Directory Listing Pattern vulnerability type, not
every vulnerability AppScan reported was a true positive. One

example we encountered of a false positive was the Email
Address Pattern vulnerability type, which AppScan uses to
search for anything in HTTP responses coming from a web
application that may resemble e-mail addresses. A webform
used in OpenEMR for controlling batch communication
contained an example email address of your@example.com,
which was not actually a security vulnerability.

4. RESULTS
This section describes the results of our evaluation. A more
updated version of our results containing studies on other open
source healthcare applications and using a more varied selection
of tools can be found on our publicly-accessible wiki11.

4.1 Static Analysis
Using Fortify 360, we discovered 1,210 potential vulnerabilities
related to security with OpenEMR. After the removal of false
positives, we determined that there were 440 true positive
implementation flaws that would not be detected by the CCHIT
certification security test scripts. Table 2 presents a summary of
the data we collected.

Table 2. Static Analysis Summary of OpenEMR

Measure Value
Total Alerts 1210
True Positives 440
False Positives 770
False Positive Rate 63.64%

These 440 true positive vulnerabilities were broken down into
the following types, appearing in order of frequency:

• Cross-Site Scripting (215) – input is taken from a
user and not correctly validated, allowing for
malicious code to be injected into a web browser.

• Nonexistent Access Control (129) – access to a
particular URL is not protected, granting anyone
access.

• Dangerous Function (24) – methods used within the
code are inherently insecure or deprecated and they
should not be used.

• Path Manipulation (20) – input from users is directly
passed to the filesystem allowing attackers to
manipulate or read normally inaccessible files.

• Error Information Leak (19) – system or error
information containing sensitive data is displayed to
the user.

• Global Variable Manipulation (9) – attackers can
manipulate the application’s global variables.

• Insecure Upload (8) – file uploads are not properly
validated, allowing attackers to upload malicious files.

• Improper Cookie Use (7) – sensitive information is
stored in a persistent cookie, or the cookie failed to set
the HttpOnly flag to mitigate Cross-Site scripting.

11 http://agile.csc.ncsu.edu/healthcare

• HTTP Header Manipulation (4) – attackers can
manipulate the HTTP response headers.

• Hidden Field Manipulation (3) – hidden fields are
not properly validated, allowing attackers to
manipulate application function.

• Command Injection (2) – input from users is directly
executed, allowing malicious users to execute
commands on the host.

As an example, one true positive was the lack of a “user specific
secret in order to prevent an attack.” The file admin.php, a
source file belonging to the events calendar component, requires
no authentication for the import and export of data.

Another example of a vulnerability found by fortify is the use of
an insecure or deprecated method. One method,
mysql_escape_string() was used four times throughout
the OpenEMR codebase. This method does not properly escape
input by taking into account the current character set and is
deprecated and even removed in the most recent releases of
PHP12. Figure 3 shows one example of OpenEMR using this
deprecated code (bolded).

foreach ($_POST as $k => $var) {
 if (! is_array($var)) $_POST[$k] =
 mysql_escape_string($var);
 echo "$var\n";
}

Figure 3. mysql_escape_string() deprecated method (PHP)

4.2 Automated Penetration Tests
Using Rational AppScan, we discovered 140 potential
vulnerabilities with OpenEMR. After the removal of false
positives, we determined that there were 130 implementation
flaws that would not be detected by the CCHIT certification
security test scripts. Table 3 presents a summary of the data we
collected.

Table 3. Automated Penetration Test Summary of
OpenEMR

Measure Value

Total Alerts 140

True Positives 130

False Positives 10

False Positive Rate 7.14%

12 http://php.net/manual/en/function.mysql-escape-string.php

These 130 true positive vulnerabilities were broken down into
the following types, appearing in order of frequency:

• Cross-Site Scripting (50) – similar to the first
example above.

• Phishing Through Frames (25) – a parameter was
used to inject an embedded frame with a request to an
off-site URL.

• Cross-Site Request Forgery (22) – it is possible to
generate an unauthorized request to any page in the
system by creating a mock version of an HTML form.

• Error Message Information Leak (14) – as in the
example presented in Figure 4.

• SQL Injection (4) – input from users is directly used
in SQL queries, allowing attacks to read and
manipulate the database in unintended ways.

• JavaScript Cookie References (6) – in which
portions of the application’s logic were controlled via
a JavaScript set cookie, which could easily be disabled
if the user chooses to turn off JavaScript in their
browser.

• Directory Listing (6) – attackers can view the
contents of individual directories.

• Password Not Encrypted (2) – passwords not sent
over SSL, allowing attackers too more easily intercept
them.

• Path Disclosure (1) – information about the system
path is leaked to the attacker.

One vulnerability type AppScan discovered was Error Message
Information Leakage that displayed the entire structure of a
SQL query (see Figure 4). The page a practitioner would use to
view a patient’s personal information, demographics.php, is one
example. AppScan was able to set the parameter set_pid,
which controls the logic of the select query used to browse
through patient information, to null, which caused OpenEMR
to display the result in Figure 4. Such a fault is a dangerous
result because it allows the attacker to know what the structure
of the query looks like, which makes future SQL injection
attacks easier.

Another vulnerability type discovered was Cross-Site
Scripting. An extended demographics display page,
demographics_full.php (Figure 5), has a parameter for set_pid,
which is the parameter required for the patient’s identifier.

Figure 4. Error Message Information Leak in OpenEMR

AppScan set this parameter to
>”'><script>alert(135190)</script>&is_new=>"'><s
cript>alert(135190)</script>

and was able to cause OpenEMR to execute this script, thus
indicating that the application is vulnerable to Cross-Site
Scripting.

Of the 130 true positives found by AppScan, 61 were also found
previously by Fortify. This overlap in results acts as additional
confirmation of the validity of these true positives.

5. LIMITATIONS
The results reported by automated tools may not be entirely
comprehensive. Future testing could use additional tools to
discover faults not originally detected. Researchers examined
each potential vulnerability and determined if they were either
true or false positives. This examination could possibly
introduce human error, which could affect our results. The
application we studied, OpenEMR, is not currently CCHIT-
certified. We only conducted one case study on one software
project, which could potentially not be representative. Future
studies should investigate the security posture of other open
source healthcare applications and help to introduce new criteria
for CCHIT certification.

6. CONCLUSIONS
Our results revealed that many of the errors, including numerous
input validation vulnerabilities, are disregarded in the existing
CCHIT criteria and test scripts.

Consider a misuse case that could be created for the situation
where a patient creates his or her own web form to edit another
patient’s records using the page demographics.php within
OpenEMR. The resultant security requirement from this misuse
case would indicate that the page demographics.php should
contain a user-specific secret, created at runtime, to prevent an
attack of this type. This implementation bug is taken from an
example that is detected by Fortify 360 and can be seen in our
results.

A generalized form of this misuse case should be included in the
CCHIT security test scripts. Rather than a test script that

specifically describes an attack on demographics.php, a misuse
case can be written to capture the attack pattern demonstrated in
the test that would occur for all electronic health records system.
In this example, the misuse case would read something similar
to “A patient attempts to modify another patent’s demographics
that he or she is not authorized to view or edit.”.

Such additions to the security test scripts for CCHIT would
motivate the creation of additional security criteria. The change
would also promote secure coding practices by encouraging
developers to build security in early in the development process,
a philosophy supported by McGraw [4]. Rather than waiting
until late in the development cycle to execute static analysis and
penetration testing tools, misuse cases would encourage
developers of EHR systems to think about security early in the
software lifecycle and to help ensure that EHR systems actually
protect our health records.

7. FUTURE WORK
Our future work will specify and analyze a set of black box test
cases for the implementation bugs discovered and tested by
AppScan and Fortify. We will also generate misuse cases that
simulate attack patterns that have been common among both
web and client applications in recent years. We also plan to
further evaluate OpenEMR to determine how well it will score
against CCHIT’s test scripts.

8. ACKNOWLEDGMENTS
We would like to thank Niraj Deosthali and Jerrod Lankford for
their assistance in eliminating false positives from our potenial
security faults. This work is supported by the Agency for
Healthcare Research Quality as well as an IBM Faculty award.
Additionally, this work is supported by the National Science
Foundation Research Experience for Undergraduates No.
0937692. Any opinions expressed in this material are those of
the authors and do not necessarily reflect the view of the
National Science Foundation.

9. REFERENCES

Figure 5. Cross-Site Scripting in OpenEMR

[1] J. Cavano, and J. McCall, “A framework for the
measurement of software quality,” in Software quality
workshop on functional and performance issues, 1978,
pp. 133-139.

[2] E. Singer, "A Big Stimulus Boost for Electronic
Health Records," Technology Review, MIT, 2009.

[3] H. P. Office. "HHS Officially Recognizes
Certification Body to Evaluate Electronic Health
Records," 1/18/2010, 2010;
http://www.hhs.gov/news/press/2006pres/20061026a.
html.

[4] G. McGraw, Software Security: Building Security In:
Addison-Wesley Professional, 2006.

[5] T. Gunter, and N. Terry, “The Emergence of National
Electronic Health Record Architectures in the United
States and Australia: Models, Costs and Questions,”
Journal of Medical Internet Research, vol. 7, no. 1,
2005.

[6] N. Ayewah, D. Hovermeyer, J. D. Morgenthaler et al.,
“Using Static Analysis to Find Bugs,” IEEE Software,
vol. 25, no. 5, pp. 22-29, 2008.

[7] B. Arkin, S. Stender, and G. McGraw, “Software
penetration testing,” IEEE Security & Privacy, vol. 3,
no. 1, pp. 84-87, 2005.

[8] G. Sindre, and A. Opdahl, “Eliciting requirements
with misuse cases,” Requirements Engineering, vol.
10, no. 1, pp. 34-44, 2005.

[9] F. Swiderski, and W. Snyder, Threat Modeling,
Redmond, WA: Microsoft Press, 2004.

