
On the Effective Use of Security Test Patterns

Ben Smith and Laurie Williams
Department of Computer Science
North Carolina State University

Raleigh, NC, USA
[ben_smith, laurie_williams]@ncsu.edu

Abstract— Capturing attacker behavior in a security test plan
allows the systematic, repeated assessment of a system’s
defenses against attacks. To address the lack of security
experts capable of developing effective black box security test
plans, we have empirically developed an initial set of six black
box security test patterns. These patterns capture the expertise
involved in creating a black box security test plan in the same
way that software design patterns capture design expertise.
Security test patterns can enable software testers lacking
security expertise (in this paper, “novices”) to develop a test
plan the way experts could. The goal of this paper is to evaluate
the ability of novices to effectively generate black box security
tests by accessing security expertise contained within security test
patterns. We conducted a user study of 47 student novices, who
used our six initial patterns to develop black box security test
plans for six requirements from a publicly available
specification for electronic health records systems. We created
an oracle for the security test plan by forming a panel of
researchers who manually completed the same task as the
novices. We found that novices will generate a similar black
box test plan to the oracle when aided by the six black box
security test patterns.

Keywords-security; vulnerability; patterns; testing; black
box; user study

I. INTRODUCTION
In 2010, Jim Gosler, a fellow at the Sandia National

Laboratory who works on countering attacks on U.S.
networks, claimed that there are approximately 1,000 people
in the country with the skills needed for cyber defense.
Gosler went on to say that 20 to 30 times that many are
needed [1]. Additionally, the CEO of Mykonos Software
security firm indicated that today's graduates in software
engineering are unprepared to enter the workforce because
they lack a solid understanding of how to make their
applications secure [2]. Particularly due to this shortage of
security expertise [3], the development community needs a
vehicle to capture and disseminate knowledge about how to
assess whether software systems have adequate defenses
against malicious users.

Capturing attacker behavior in a security test plan allows
the systematic, repeated assessment of a system’s defenses
against an attack or class of attacks. We adapt the notion of a
software design pattern as proposed by Gamma et al. [4] to
the domain of black box security testing. A design pattern is
a description of a recurring problem and a description of the
core solution to the design problem that is described “in such

a way that you can use this solution a million times over,
without ever doing it the same way twice” [5]. A software
security test pattern is a recurring security problem, and the
description of the a test case that reveals that security
problem, that is described such that the test case can be
instantiated a million times over, without ever doing it the
same way twice. Just as design patterns capture design
knowledge into a reusable medium [4], software security test
patterns capture security-testing knowledge into a reusable
medium.

We developed an initial set of six security test patterns
using a two-step empirical grounded theory approach [6].
We first produced a black box test case that would
successfully expose a vulnerability from the CWE/SANS
Top 251 using security expertise. The Top 25 is a list of the
most dangerous programming errors that can lead to serious
vulnerabilities in software. We repeated this process until
we covered all of the Top 25 with at least one test case, and
then we categorized and grouped the test cases by similarities
in their test procedure and approach. Once the organization
of the tests was complete, we extracted the similar parts
amongst all the groups and we obtained the six intial
patterns. We describe these six initial patterns in more detail
in Section III. In this paper, we investigate how software
testers who have relatively low security training or expertise
(henceforth “novices”) use these six patterns to develop their
own black box security test plans.

Software design patterns have enabled practitioners to
access and re-use the design expertise contained within
software design patterns to make informed design decisions
[7]. Our theory is that our software security test patterns can
enable novices to write black box secruity test plans in a
similar way to how the experts could.

The goal of this paper is to evaluate the ability of novices
to effectively generate black box security tests by accessing
security expertise contained within security test patterns. For
our patterns to be effective, the patterns and their application
must be accessible, that is, they must be easy to use and easy
to understand. We measured the accessibility of the patterns
in three ways: 1) whether the novices used the patterns to
generate a similar black box test plan as experts could; 2) the
amount of time consumed by the novices as they used the
patterns; and 3) the novices’ subjective opinions about the
usefulness of the patterns after using them to generate black

1 http://cwe.mitre.org/top25

box security test plans. To address this goal, we conducted a
user study of 47 novices. These novices applied software
security test patterns to develop black box security tests for
six functional software requirements from a publicly-
available specification for electronic health records systems
[8]. We compared the novices’ plans to an oracle developed
by a panel of researchers we assumbled, who developed a
consensus around the security test plan.

The rest of this paper is organized as follows. Section II
reviews the background for this paper. Next, Section III
describes software security test patterns. Then, Section IV
elucidates the methodology we used to conduct the user
study. Section V presents the results of our study. Section
VI presents the limitations of the study. Finally Section VII
concludes.

II. RELATED WORK
This section describes the relevant related research to this

paper.

A. Secure Software Development
Our software security test patterns are different than

traditional black box testing techniques (e.g. those proposed
by Beizer [9]). Software security testing entails that we
validate not only that the system does what it should
securely, but also that the system does not do what it is not
intended to do [10]. To illustrate the difference, consider the
following requirement: "The system shall provide the ability
to send 250 character messages between users." The
functional black box testing would result in a test plan that
tests several variations on messages sent, such as trying a
zero-length message, trying a message that is too long,
sending the message to a non-existent user, or attempting to
send with no database. Software security testing entails
using this provided functionality in unintended ways, such as
turning the message sending functionality into a spamming
mechanism, sending malicious links to users within the
system, or impersonating a different user. This unintended
functionality is not often found in the requirements document
unless the team has performed an explicit analysis of security
requirements (i.e. [11–13]).

We do not intend the use of our software security test
patterns to replace any existing methodology or technique.
Austin and Williams found that there is no security
methodology or technique which will find every type of
vulnerability [14]. In light of this finding, we introduce our
patterns as a new technique to help guide the software testers
in one aspect of secure software development. Secure
software methodologies, such as the Security Development
Lifecycle (SDLC) [15] and OWASP's Comprehensive
Lightweight Application Security Process (CLASP) [16],
advocate considering security throughout the lifecycle. The
concept of building security in prescribes that developers and
testers consider system security from the outset of the project
and design the system to be protected from malicious attack
[17]. For example, towards the time of the product's release
in the SDLC, an independent security team must finish a
"security push." This team must close any unfixed security

issues and review the system's threat models to ensure that
all possible avenues of attack have been secured [16]. Both
the SDLC and CLASP indicate security testing as one
component or aspect of their methodologies [15], [16]. One
important aspect of producing secure software is the
execution of black box tests related to security, also known
as penetration testing [18]. The success of current security
assurance techniques that occur late in the product's lifecycle,
such as penetration testing, vary based on the skill,
knowledge, and experience of testers [18].

B. Security Patterns
Yoder and Barclaw were the first to introduce application

security patterns [19], and since then, many more security
patterns have been introduced (e.g. as summarized in [20]).
Like the patterns introduced in Gamma, et al. [4], security
patterns have the following components: Context, Problem,
Forces, Solution, and Consequences. Software security
patterns provide expert guidance about architecture and
design for a secure system users. Our security test patterns
deviate from these components because of the focus on
testing rather than encapsulating design concepts.

Halkidis et al. [21] developed a methodology for
characterizing the security risk for systems based on the
number and type of security patterns present in those
systems. Halkidis et al. evaluated two web-based
applications, one which used some of the 13 security patterns
from the Open Group Security Patern Technical Guide [22],
and one group that did not use any patterns. Based on the
results of an automated tool and prior experiences, Halkidis
et al. determined the likelihood of certain attacks for each of
these systems and then analyzed the ability of each security
pattern to prevent exploits using these attacks. Halkidis et al.
determined that the system that used the security patterns
was significantly more resistant to attack than the system that
did not.

Halkidis et al. also evaluated the same 13 patterns based
on their ability to uphold ten security principles introduced
by Gary McGraw [23]. The ten security principles include
notions such as securing the weakest link, practicing defense
in depth, and the principle of least privilege [24]. Halkidis et
al. found that although there was no single pattern that could
be used to uphold all ten principles, designers could achieve
all ten principles with a proper combination of the patterns.
These researchers carefully thought through how each
pattern would or would not uphold each principle and
summarized the results. Additionally, Halkidis et al. found
that most patterns uphold between one an three principles
and no pattern upholds more than six principles. We
evaluated our security test patterns by the number of
successful vulnerabilities we revealed using black box tests
created with the patterns in earlier work [25]. In this paper,
we also evaluate the accessibility of these test patterns for
novice use in revealing vulnerabilities.

III. SOFTWARE SECURITY TEST PATTERNS
Section A defines software security test patterns. Section

B demonstrates how security test patterns are instantiated.

Then, Section C provides an example pattern and an
overview of the initial patterns. Finally, Section D reviews
our evaluation of the catalog.

A. What is a Software Security Test Pattern?
Design patterns were originally conceived by Alexander

[26] in the field of building architecture, and tailored to
software engineering by Gamma, et al. [4]. Alexander later
introduced the notion of design pattern languages [5], which
were tailored to software engineering by Coplien [7]. A
pattern language is a collection of patterns that build on each
other to generate a software system [5]. A pattern catalog is
different than a pattern language in that a catalog is not
necessarily complete or sufficient to develop or test an entire
system.

For security test patterns, the “recurring security
problem” is a vulnerability type or class of vulnerabilities.
The “core solution” is a black box test that reveals those
vulnerabilities. Finally, each test case that we produce with
the pattern is one of the “millions of instantiations” possible
with that pattern. A software security test pattern contains a
template of a test case that exposes vulnerabilities, typically
by emulating what an attacker would do to exploit those
vulnerabilities. The parts of the pattern below that are in
braces (e.g., <insert object phrase>) indicate instructions to
the user on how to instantiate the pattern (see Section B).

We developed our patterns based on the CWE/SANS
Top 25 Most Dangerous programming errors (see Section
C). The “Targeted Vulnerability Types” component of the
patterns is a list of the vulnerabilities types from the
CWE/SANS Top 25 list that the pattern was based on.

The following is an example of a software security test
pattern.

Pattern: Input Validation Vulnerability Tests

Keywords: Record, Enter, Update, Create, Capture,
Store, Edit, Modify, Specify, Indicate, Maintain, Customize,
Query, Receive, Search, Produce

Targeted Vulnerability Types: Cross-site
Scripting, SQL Injection, Classic Buffer Overflow, Path
Traversal, OS Command Injection, Buffer Access with
Incorrect Length Value, PHP File Inclusion, Improper
Validation of Array Index, Information Exposure Through an
Error Message, Integer Overflow or Wraparound, Incorrect
Calculation of Buffer Size, Race Condition, Uncontrolled
Format String, NULL Pointer Dereference, Incorrect
Conversion between Numeric Types, Untrusted Search Path,
Use After Free, External Initialization of Trusted Variables
or Data Stores, Missing Initialization

Test Procedure Template:
1. Authenticate as <insert a registered user name>.
2. Open the user interface for <insert action

phrase>ing an <insert object phrase>.

3. Inject one random attack from the attack list2 into a
field of the <insert object phrase>.

4. Repeat the previous step for five attacks3 from the
attack list.

5. Repeat the previous two steps for five fields from
the <insert object phrase>.

Expected Results Template:
• The system should gracefully inform the user that

the input is invalid.
• The data store for the <insert object phrase> should

remain intact.
• The system shall not reveal data that is not a part of

this <insert object phrase>.
• No error messages should occur that reveal sensitive

information about the system's configuration or
architecture.

Example Natural Language Artifact: Requirement AM
02.04 - The system shall provide the ability to modify
demographic information about the patient.

Example Test Procedure:
1. Authenticate as Dr. Robert Alexander.
2. Open the user interface for entering patient

demographic information and create a new patient.
3. Inject one random attack from the attack list into a

field of the demographic information.
4. Repeat the previous step for five attacks from the

attack list.
5. Repeat the previous two steps for five fields from

the patient demographic information.
Example Expected Results:
• The attack strings should be neutralized or sanitized

before insertion, or the attack strings should be
rejected and the user gracefully informed that their
input is invalid.

• The data store for the demographic information
should remain intact.

• No data should be revealed that is not a part of this
patient's demographic information.

• No error messages should occur that reveal sensitive
information about the system's configuration or
architecture.

B. Instantiating Software Security Test Patterns
To instantiate a test pattern from our catalog, testers need

a natural language artifact, such as a requirements statement.
The content of the requirements statement can be used to
guide the tester as to what types of vulnerabilities might be
present, given the functionality provided by the requirement,
and the type of black box security test(s) that should be
executed to try to expose the vulnerabilities.

2 Any attack list can be used, but for this paper we used a list of common

attacks from http://neurofuzz.com.
3 The choice of the number of tries for attacks is admittedly arbitrary. A

security tester could execute as many attacks in as many fields as he or
she desires. Some limit on the number of attacks will help in situations
where testing a product is time-limited.

Traditional functional requirements are "shall" statements
[27]. Requirements specifications like these typically
conform to the following format: "The system shall provide
the ability to <action phrase> a <object phrase>
<and/with/in supporting information>. <Supporting
information>." The action phrase in these statements is
typically an action that the system will perform on that data
store, such as store, graph, view, print, or edit. The object
phrase in these statements is most often a data store, such as
a listing of users or a report regarding multiple data records
for output. The supporting information in these statements
provides additional information as to how, or when the
system should achieve the key action phrase. Sometimes the
supporting information is a separate sentence or can extend
to an additional sentence.

Our methodology for creating application level security
tests uses key phrases (key action phrase and key object
phrase) and supporting information of the requirements
statement to determine the type of security test that will most
likely reveal vulnerabilities in the system. The first phrase
that the tester comes to after reading "The system shall
provide the ability to…" typically contains the key action
phrase and is followed by the key object phrase. We call
these phrases key because define the functionality the system
has with respect to its environment. For example, consider a
requirement that states, “The system shall provide the ability
to modify demographic information about the patient,” can
be broken down as follows:

• Key Action Phrase: modify

• Key Object Phrase: demographic information about
the patient

• Supporting Information: none

The phrase modify is the key action phrase. This key
action phrase indicates that the funcionality involves
modifying data. This new functionality may provide an
attacker the ability to input malicious strings that can take the
form of a cross-site scripting [28], SQL injection [29] or
other input validation vulnerabilities. These attacks, if
properly executed, have the potential to tamper with or
reveal information from the demographic information object.
Based on this intuition, a software tester should instantiate
the Input Validation Test pattern (see Section III.A). The
novice software tester would instantiate other test patterns
from our catalog (described in Section III.C) depending on
whether those patterns are signaled by the keywords in the
requirements statement. In the example described above, the
Audit and Force Exposure pattern, both described in Section
III.C should also be instantiated.

A software tester who conducts our methodology repeats
the procedure described in this section for every requirement
found in the requirements specification, adding black box
security test cases to a test plan as he or she goes.
Depending on the order in which the tester encounters the
requirements, a given requirement statement may produce
none, one, or many test cases.

C. Overview of the Initial Pattern Catalog
We developed the set of initial test patterns using a

grounded theory approach [6]. We examined the
CWE/SANS Top 25, a list of the most dangerous application
programming errors. We include the 23 vulnerabilities that
CWE lists as being “on the cusp” as well, and we call this list
the “CWE/SANS Top 25+.” To create a pattern catalog
using grounded theory, we first produce a black box test case
that would successfully expose a vulnerability from the
CWE/SANS Top 25+ using security expertise. We repeat
this process until we cover all of the Top 25+ with at least
one test case, and then we categorize and group the test cases
by similarities in their test procedure and approach. Once the
organization of the tests is complete, we extract the similar
parts amongst all the groups and we obtain the patterns. Our
software test pattern catalog (see Section C.2) should not be
confused with a pattern language, in the way that Alexander
and Coplien conceived of pattern languages. Instead, our
pattern catalog is a collection of related patterns that can be
instantiated within the same domain and contain the same
elements (e.g. keywords, procedure template, an example of
use, etc.) [4].

Using the technique described in this section, we
obtained the following initial pattern catalog containing six
patterns. Additional details, including a detailed description
of each test type and the key phrases that the test type maps
to can be found on our security test patterns wiki4.

• Input Validation Vulnerability Tests – target
vulnerabilities related to improperly validated user
input, and are described more thoroughly in Section
2.

• Force Exposure Tests – expose functionality or
information in a system that the user is unauthorized
to use or see by recording the series of steps to get to
the functionality and then repeating this series of
steps without authorization.

• Malicious File Tests – upload a file that contains
malicious scripting or otherwise would exploit a user
who downloads that file by uploading some sample
dangerous files and then trying to download them
again.

• Malicious Use of Security Functions Tests –
exploit or misuse security functionality such as
passwords, encryption, hashing, changing
passwords, etc.

• Dangerous URL Tests – inject a URL for the
purposes of phishing or spamming a user.

• Audit Tests – check that all actions performed on
data that is sensitive or protected are recorded in a
human-readable format.

D. Initial Evaluation
In prior work [25], we created test cases based upon these

patterns using 284 functional requirements from a public

4 http://securitytestpatterns.org

specification [8] to generate 137 black box tests. We then
executed these tests on each of five electronic health record
systems: OpenEMR 5 , ProprietaryMed 6 , WorldVistA 7 ,
Tolven8, and PatientOS9. These systems are currently used to
manage the clinical records for approximately 59 million
patients, collectively: Out of the 685 total test executions,
253 (37%) revealed vulnerabilities in the five systems. Also,
our evaluation shows that using our patterns reveals
vulnerabilities typically missed by automated penetration
testing and static analysis (e.g. design flaws). An
undergraduate student with minimal security experience also
executed the test plan on our study subjects and achieved the
same results, indicating that novices can effectively use the
test plan. In this paper, we evaluate the ability of novice
software testers to create a test plan using our six initial test
patterns.

E. Tool Support: STPI
We have implemented Security Test Pattern Instantiator,

or STPI, a requirements parsing tool that builds upon the
Stanford Parser libraries [30]. STPI helps software testers
quickly and properly instantiate our patterns over a set of
requirements to develop a black box security test plan. A
running copy of STPI is available from our security test
patterns website10. STPI uses the natural language processing
engine within the Stanford Parser to extract the key phrases
described in Section III.B. STPI presents the user with one or
more phrases parsed from the entered natural language
specification, the default key phrase, and an other box for
manually entering their own key phrase. After selecting the
requisite key phrases from the parsed natural language
requirements statement, STPI presents our security test
pattern catalog. If a keyword that is contained within the
pattern was found in the correct key phrase of the natural
language statement, then that pattern is selected by default.
After selecting requisite key phrases and the applicable
patterns, the user clicks “Select and Edit Test Cases,” and
STPI provides the user with generated test cases. The test
cases contain the Test Procedure Template and Expected
Results Template from the selected patterns with the key
phrases the user selected automatically filled in. After
instantiating a pattern, the user can save the results to an
editable black box security test plan. STPI also allows the
user to customize or create patterns, handle sets of
requirements, automatically parse requirements, and export
their black box test plan. We present a screenshot of using
STPI to parse a requirement and generate a black box test in
Figure I.

5 http://oemr.org/
6 ProprietaryMed was developed by an organization that wishes to keep the

identity of their product confidential.
7 http://worldvista.org/
8 http://tolven.org/
9 http://patientos.org
10 http://securitytestpatterns.org

IV. STUDY DESIGN
We conducted a user study of 21 graduate and 26

undergraduate students who have relatively low security
training or expertise (novices). The novices applied software
security test patterns to develop black box security tests for
six functional software requirements from a publicly-
available specification for electronic health records systems
[8]. Using the Goal-Question-Metric template, as proposed
by Basili et al. [31], we expand our goal statement:

Analyze the process of using software security test
patterns to develop security test cases
for the purpose of evaluation
with respect to effectiveness for providing an accessible
security test generation technique
from the perspective of the novice software tester.

Our goal statement results in several research questions,
each of which have one or more associated metrics or
measurements that can be used to answer the questions as
they pertain to the goal [31]. For our patterns to be effective,
the patterns and their application must be accessible, that is,
they must be easy to use and easy to understand. We elicit
three research questions regarding the accessibility of the
patterns and technique:

RQ1. Do the novices use the patterns to generate a similar
black box test plan as the experts could?

RQ2. How time consuming is the process of instantiating
patterns into black box tests?

RQ3. Do novices find the patterns and their use accessible
after they have completed the study?

We present the metrics and measurements associated
with each of these research questions when we answer them
in Section V. The rest of this section is organized as follows.
Section A describes the operation of our research tool.
Section B describes how we collected the expert consensus.
Then, Section C describes our user sample and response rate.
Finally, Section D describes the requirements set.

A. Research Instrument: STPIPrime
We customized STPI (see Section III.E) for this study to

create STPIPrime, which helped gather the data from the
novices who participated in our study. For the case study, we
removed the ability to customize patterns or handle
requirements set, and hard-coded STPIPrime so that novices
could only access the requirements used in this study. We
also modified STPIPrime to store the selections the novice
made for each key phrase, as well as the patterns the novice
chose to instantiate for each requirement in a database table.
We also augmented STPIPrime with an audit log for each
novice as they proceeded through the exercise which marked
a timestamp for each action the novice took. We also built a
survey tool into STPIPrime. The survey asked the novices’
opinion of the the patterns, their application, and the amount
of years of experience the novice had in software engineering
and software security. We present the questions of this
survey with the results in Section V.C.

B. Establishing Expert Consensus
The key phrases selected by a software tester in each

requirement, as well as which security test patterns to
instantiate is a subjective decision. As such, before we
conducted our study of the novices, we established a baseline
consensus on which pattern(s) should be instantiated for each
requirement. We formed an expert panel of six doctoral
students and one undergraduate student. Many of the
students in this panel have conducted extensive research in
software security. We presented the experts with each
requirement, and asked them to select the key object phrase,
actor phrase and action phrase. We also asked the experts to
select which test patterns of the six they would instantiate.
Using the Delphi Method [32], after making each decision,
and writing it down in secret, the experts read their decision
aloud and discussed the reasons for their choices. Then we
asked everyone to reconsider their choices and vote again.
We repeated this process until everyone had the same vote
and established a consensus. The experts made their choices
manually, without using STPIPrime. The process of forming
consensus among the experts took approximately three and a
half hours. We recorded the experts in their discussions
about each decision, and transcribed the entire session.
Additionally, we kept a record of every expert’s vote on each
decision, including the final vote that resulted in a consensus.
The Delphi Method allows for multiple definitions for a
stopping point when we could claim that the experts had
consensus. We chose to ask our experts to form a unanimous
verdict because many of the discussions regarding the correct
choice of key phrase or the applicable pattern would only

come out when a group of the experts were trying to
convince one dissenter.

C. User Subject Groups
We called for participation from novices in an

undergraduate software engineering course and a graduate
software security course, both at North Carolina State
University in the United States. We present an overview of
the sample sizes and response rates for each group in Table I.
The second column in Table I presents the number of
complete responses we have from each group. The third
column in Table I presents the number of novices who were
offered the chance to take the study. We offered novices
from the undergraduate course 1 extra percentage point on
their course grade if they completed the study. Fifty-nine
(59) of 68 students were in attendance the day we presented
the study.

Table I. Response Rate and Sample Sizes

Responses
(Sample Size)

Population
Size

Response
Rate

Graduate 21 26 81%
Undergraduate 26 68 38%
Overall 47 94 50%

D. Requirements Set
In 2006, the Certification Commission of Healthcare IT

(CCHIT) defined 284 certification criteria focused on the
functional capabilities that should be included in EHR
systems [33]. In this paper, we chose to instantiate our test
cases using the CCHIT certification criteria [8] because our
previous work (summarized in Section III.D) was based on
the CCHIT criteria. The novices and experts were each given
nine decisions (three key phrases, six patterns) to make about
each requirement in the first six CCHIT requirements. We
present the first six CCHIT requirements in Table II.

Table II. User Study Requirements Set
Requirement ID Requirement Text
AM 01.01 The system shall create a single record for

each patient.
AM 01.02 The system shall associate (store and link)

key identifier information (e.g., system ID,
medical record number) with each patient
record.

AM 01.03 The system shall provide the ability to store
more than one patient identifier for each
patient record.

AM 01.04 The system shall provide a field which will
identify patients as being exempt from
reporting functions.

AM 01.05 The system shall provide the ability to
merge patient information from two patient
records into a single patient record.

AM 02.01 The system shall provide the ability to
include demographic information in reports.

	
Figure I. Using STPI to Parse a Requirement	

V. RESULTS
In this section, we provide results from our study that

help answer the research questions we outlined in Section
IV.

A. Level of Agreement
RQ1. Do the novices use the patterns to generate a

similar black box test plan as the experts could?

Metrics: Kappa scores for agreement between novices
and experts for key phrases and applicable patterns.

The Fleiss Kappa Score is a measurement of inter-rater
agreement amongst a fixed number of raters [34]. We use
the Kappa score to measure the amount to which a group of
people agree on the key phrases and applicable patterns for a
requirement. We also use the Kappa score to measure the
amount to which the novices agree with the experts. Each of
the raters gives an answer on a set of n subjects, and can
decide among many categorical options (e.g. a, b, or c). The
Kappa score represents the extent to which the observed
amount of agreement exceeds what would be expected if all
raters made their ratings completely randomly. A Kappa
score of 1.0 indicates that all k raters agreed on each of the
subjects in the sample. A Kappa score of zero or less
indicates that all k raters agreed less than would be expected
by random chance. A Kappa score is also assigned a p-
value, which represents the probability that this sample’s
Kappa is a chance occurrence. A Kappa with a low p-value
means that the population this sample was taken from is
likely to have a similar Kappa score. For the purpose of this
paper, we consider a Kappa of 0.2 or higher to be sufficient
to say that an agreement exists, as indicated by Landis and
Koch [35]. We consider a p-value below the 0.05 level as
statistically significant.

First, we compare the novices individually to the experts.
We calculated the Kappa score of each novice’s agreement
with the expert conensus on all 54 decisions they made for
this study. Figure II displays the distribution of Kappa
scores for the 47 novices’ agreement with the expert
consensus. With an average Kappa of 0.303 and an
interquartile range of 0.269 to 0.354, we can say that the
novices had a fair agreement with the experts overall. We
also calculated the p-values for each of these Kappa scores
and found that only two Kappa scores had a p-value above
our acceptable 0.05 level.

Next, we compare the novices agreement with each
other. Using the Fleiss Kappa score for 54 subjects and 47
raters, we arrive at a Kappa of 0.547 with a p-value of less
than 0.0001. By looking at only the decisions about key
phrases, we can see that the novices strongly agreed with
each other, with a Kappa of 0.673 and a p-value of less than
0.0001. The novices shared fair agreement with whether
each pattern was applicable with a Kappa of 0.246 and a p-
value of less than 0.0001.

In summary, we found fair agreement between each
novice and the experts for the 54 decisions that each group
made for this study. The novices also express fair agreement

among themselves for the 54 decisions they made in this
study.

Indications: Novices using security test patterns seem to
make somewhat similar decisions about which patterns are
applicable as other novices do. Novices also make similar
decisions about which patterns are applicable as the experts.

B. Novice Times
RQ2. How time consuming is the process of instantiating

patterns into black box tests?

Metrics: Average times of completion on each
requirement for each novice, average total time to complete
exercise, and average time per requirement.

As we described in Section IV.C, STPIPrime marked
timestamps down to the second for each action the novices
completed. In particular, we marked the time when a novice
is first shown a requirement, and the time when the novice
has saved the generated test cases for a requirement. To
analyze these data, we manually inspected each novice’s
audit log and annotated the timestamps of the sequence of
events to group the novice’s actions into several groups: 1)
the time for the completion of parsing each individual
requirement; 2) “ramp up”: the time before the novice began
parsing requirements, which includes reading the
instructions, interacting with the demo parser, any false-starts
the novice made with the requirements set; and 3) “cool
down”: the time after the novice had completed parsing all
requirements, but had yet to log out of the system, which
includes time spent taking the survey.

 After we had finished manually analyzing these data, we
had a time for completion in seconds for each novice on each
requirement, as well as the ramp up and cool down phases.
We took the average of these times for n=47 novices and
present the result in Table 8. We calculated the row labeled
“Reqs. Only” by subtracting the timestamp when the novice
started the first requirement from the timestamp when the
novice finished the last requirement. We calculated the
“Time/Req.” row by dividing the “Reqs. Only” row by n=6
requirements, as presented in Table III.

• Novices spent on average 29 minutes 49 seconds
completing the entire user study.

• Novices spent on average 14 minutes 9 seconds to
generate a security test plan for six functional
requirements.

We also assigned an ordered value for each of the first six
phases of the exercise that we observed. In this study, “1”
was the “ramp up” time, “2” was requirement AM 01.01, and
so on. If we fit a line to this relationship, we can analyze the
effect of the change in phase has on the novices’ average
time to complete that phase. Using this technique, we were
able to see that in our sample, novices spent less time
analyzing each requirement as they proceeded through the
phases (Simple Linear Regression, R2 = 0.1792). This
decrease in time per requirement seems to indicate that
novices can make decisions more quickly as they gain
experience.

We analyzed the number of test cases produced by each
novice as a dependent variable and found that the number of
tests a novice produced increased linearly with the amount of
time that novice spent in the “Ramp Up” phase of the
exercise (Simple Linear Regression, p<0.01, R2=0.1385).
We did not find that the number of tests produced by each
novice was correlated with the total time for the study or the
total time the user spent on the requirements. However, we
found that novices produced 17 tests on average for these six
requirements, or approximately 2.8 test cases per
requirement.

Indications: Novices spent on average 29 minutes 49
seconds to complete the exercise, and spent 14 minutes 9
seconds (or 2 minutes 21 seconds/requirement) on the six
requirements. Novices took a decreasing amount of time to
analyze each requirement as they proceeded through the
study. Novices produced at least 15 tests in the exercise, or

approximately 2.5 test cases per requirement.

C. User Survey
RQ3. Do novices find the patterns and their use

accessible after they have completed the study?

Table IV presents the questions and the mean/median
answer by the novices to the survey that was administered
within STPIPrime , as described in Section IV.A. On the first
two questions, the answer was free-form text input (with
input validation), so we report the mean for a continuous
variable. For the remaining questions, the answer was a
drop-down box selection between 1 and 5. For these
answers, the appropriate summary statistic is the median due
to the scale type [37].

We note that despite the fact that novices thought the
exercise was time consuming (with an overall median of 3),
they also thought it was useful for revealing tests

	
Figure II. The Distribution of Kappa Scores for Novices Agreement with the Experts

Table III. Average Times in Min:Sec for Requirement Completion
Phase Overall Undergrad Graduate

Ramp Up 12:18 10:35 14:26
AM 01.01 4:55 4:38 5:17
AM 01.02 2:32 2:58 1:59
AM 01.03 1:51 1:06 1:34
AM 01.04 2:30 3:05 1:47
AM 01.05 1:06 1:08 1:04
AM 02.01 1:12 1:31 0:49

Cool Down 3:20 4:36 1:47
Total Time 29:49 30:40 28:44
Reqs. Only 14:09 14:09 14:09
Time/Req. 2:22 2:22 2:22

(median=4). Novices also felt that the patterns would be
useful for revealing vulnerabilities (median=4). We note
also from the results of the survey that the novices reported
lower amounts of experience in software development and
software security than the experts did on average. We could
not obtain statistical significance on the results from the
questions in the user survey, meaning that the sample may
not be representative of the population of novices.

Indications: The novices thought that the technique was
time consuming, but that the technique and the patterns were
useful for discovering vulnerabilities.

VI. LIMITATIONS
This sample of graduates and undergraduates may not be

representative of software testers at a development
organization. Other studies should test other samples of
software testers, especially those in industry. We only used
six requirements from one specification. Other requirements
from this requirements specification and other requirements
specifications may produce differing results in terms of any
of the measurements we obtained during this study.
Although we demonstrated that these patterns are effective at
revealing security vulnerabilities in earlier work, the novices
in this study did not execute their test plans on any resultant
system and therefore we do not know how effective their test
plans would be for revealing vulnerabilities. The coding of
the recorded data and the analysis of the data for statistical
relationships are both subject to human error. The statistical
results from this study may only be valid for this study. Our
interpretation of the meaning of the results is subjective.
Although Landis and Koch indicate [35] that a Kappa of 0.2
or higher indicates “fair agreement”, Gwet has explained
[38] that these assigned meanings may be more harmful than
helpful in understanding Kappa scores because the number
of categories and subjects will affect the magnitude of the
value from experiment to experiment.

VII. CONCLUSIONS AND FUTURE WORK
In this paper, we conducted a user study of 21 graduate

and 26 undergraduate students who have relatively low
security training or expertise (novices). These novices used a

research tool we developed to develop a black box security
test plan using six initial security test patterns based on six
requirements from a publicly available specification. Our
goal was to evaluate the ability of novices to effectively
generate black box tests by accessing security expertise
contained within security test patterns. We found,

• Novices using security test patterns will each make
similar decisions to the experts when developing a
black box test plan using security test patterns.

• Novices will also make similar decisions with each
other when developing a black box test plan using
security test patterns.

• Novices spent 29 minutes 49 seconds to complete the
exercse on average, with 14 minutes 9 seconds of
that parsing the requirements. Novices produced 17
tests on average while completing the exercise, for
an average of 2 minutes 21 seconds per requirement
and 2.5 tests per requirement.

• Novices reported that they felt the exercise was time
consuming, but that it would be useful for finding
vulnerabilities and that the patterns they used in this
study would also be useful for discovering
vulnerabilities.

In summary, we provide empirical evidence that novices
can effectively access the knowledge contained within our
software security test patterns to generate black box security
test plans.

In future work, we will extend the range of this sample to
software testers in industry. We will also have software
testers using the research tool we developed on a larger set of
requirements and more varied requirements. Our theory is
that software testers who are using the technique to develop a
security test plan that they will use on an industrial system
will produce differing results than software engineering
students who are completing the exercise as a part of their
educational experience. In future work, we will also expand
the pattern catalog to include a broader array of a software
security test procedures.

Table IV. Summary Statistics for Survey Responses in the Sample
Education Level Question Novices

Overall Grad. Undergrad.
Experts

Sample Contains (n=?) 47 21 26 7
How many months of software development experience have you had*? 18.6 27.1 11.7 63.1
How many months of software security experience have you had before taking this
course?

1.79 2.29 1.39 12.3

How much software engineering education have you had (1 year or less, 2 years or
less, …, more than 5 years)?

3 2 3 5

Please rate your overall experience with this exercise (1 = Terrible, 5 = Excellent). 3 4 3 4

How useful do you think this technique would be for discovering vulnerabilities (1
= Terrible, 5 = Excellent)?

4 4 4 4

How time-consuming do you think this exercise would be for non-expert software
testers (1 = Not too time consuming, 5 = VERY time consuming)?

3 3 3 4

How useful do you think the patterns you used today are for revealing
vulnerabilities (1 = Not at all useful, 5 = Very useful)?

4 4 4 4

* This does include development experience in academic courses.

ACKNOWLEDGEMENT
 This work was supported by an IBM PhD Fellowship.

We would also like to thank John Slankas for his help in
testing STPIPrime before its release to the subject group. We
would also like to thank the NC State Realsearch group for
their helpful comments in revising this paper.

REFERENCES
[1] M. L. Kelly, “Cyberwarrior Shortage Threatens US Security,” NPR

Morning Edition,
http://www.npr.mobi/templates/transcript/transcript.php?storyId=128
574055, 2010.

[2] R. Lemos, “Security lessons still lacking for computer science
grads,” InfoWorld Magazine,
http://www.infoworld.com/t/application-security/security-lessons-
still-lacking-computer-science-grads-769, 2010.

[3] K. Evans and F. Reeder, “A Human Capital Crisis in Cybersecurity:
Technical Proficiency Matters,” Center for Strategic and International
Studies,
http://csis.org/files/publication/101111_Evans_HumanCapital_Web.p
df, 2010.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Boston, MA:
Addison Wesley Longman Publishing Company, 1995.

[5] C. Alexander, A Pattern Language: Town, Buildings, Construction.
Oxford, UK: Oxford University Press, 1977.

[6] B. G. Glaser and A. L. Strauss, The Discovery of Grounded Theory;
Strategies for Grounded Research. New York, NY: Aldine de
Gruyter, 1967.

[7] J. Coplien, Software Patterns. New York, NY, USA: SIGS Books &
Multimedia, 2000.

[8] “CCHIT Certified 2011 Ambulatory EHR Certification Criteria,” The
Certification Commission for Health Information Technology,
http://www.cchit.org/sites/all/files/CCHIT%20Certified%202011%20
Ambulatory%20EHR%20Criteria%2020100326.pdf, 2010.

[9] B. Beizer, Softwar Testing Techniques. 2nd Edition. London:
International Thomson Compute Press, 1990.

[10] R. C. Martin and G. Melnik, “Test and Requirements, Requirements
and Tests: A Möbius Strip,” IEEE Software, vol. 25, pp. 54-59, 2008.

[11] C. B. Haley, R. Laney, J. D. Moffett, and B. Nuseibeg, “Security
Requirements Elicitation: A Framework for Representation and
Analysis,” IEEE Transactions of Software Engineering, vol. 34, pp.
133-153, 2008.

[12] N. R. Mead and T. Stehney, “Security quality requirements
engineering (SQUARE) methodology,” in Software Engineering for
Secure Systems (SESS), St. Louise, Missouri, USA, 2005, pp. 1-7.

[13] A. van Lamsweerde, “Elaborating Security Requirements by
Construction of Intentional Anti-Models,” in International
Conference on Software Engineering (ICSE 2004), Edinburgh,
Scotland, 2004, pp. 148-157.

[14] A. Austin and L. Williams, “One Technique is Not Enough: A
Comparison of Vulnerability Discovery Techniques,” in Emperical
Software Engineering and Measurement (ESEM), Banff, Alberta,
Canada, 2011.

[15] J. Gregoire, K. Buyens, B. D. Win, R. Scandariato, and W. Joosen,
“On the Secure Software Development Process: CLASP and SDL
Compared,” in International Conference on Software Engineering.
Software Engineering for Secure Systems (SESS 2007), Minneapolis,
MN, USA, 2007, pp. 1-7.

[16] S. Lipner, “The Trustworthy Computing Security Development
Lifecycle,” in 20th Computer Security Applications Conference,
Tuscon, Arizona, 2004, pp. 2-13.

[17] G. McGraw, Software Security: Building Security In. Addison-
Wesley Professional, 2006.

[18] B. Arkin, S. Stender, and G. McGraw, “Software penetration
testing,” IEEE Security & Privacy, vol. 3, pp. 84-87, 2005.

[19] J. Yoder and J. Barcalow, “Architectural patterns for enabling
application security,” Urbana, vol. 51, p. 61801, 1998.

[20] T. Heyman, K. Yskout, R. Scandariato, and W. Joosen, “An analysis
of the security patterns landscape,” in Proceedings of the Third
International Workshop on Software Engineering for Secure Systems,
2007, p. 3.

[21] S. T. Halkidis, N. Tsantalis, A. Chatzigeorgiou, and G. Stephanides,
“Architectural Risk Analysis of Software Systems Based on Security
Patterns,” IEEE Transactions on Dependable and Secure Computing,
vol. 5, no. 3, pp. 129-142, Sep. 2008.

[22] B. Blakley and C. Heath, “Members of the Open Group Security
Forum,” Security Design Patterns, Open Group Technical Guide,
2004.

[23] S. T. Halkidis, A. Chatzigeorgiou, and G. Stephanides, “A
Qualitative Evaluation of Security Patterns,” in Information and
Communications Security, vol. 3269, J. Lopez, S. Qing, and E.
Okamoto, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004,
pp. 132-144.

[24] J. Viega and G. McGraw, Building secure software: how to avoid
security problems the right way. Addison-Wesley Professional, 2001.

[25] B. Smith and L. Williams, “Systematizing Security Test Planning
Using Functional Requirements Phrases,” North Carolina State
University, TR-2011-5,
ftp://ftp.ncsu.edu/pub/unity/lockers/ftp/csc_anon/tech/2011/TR-2011-
5.pdf, 2011.

[26] C. Alexander, The Timeless Way of Building. Oxford, UK: Oxford
University Press, 1979.

[27] K. E. Wiegers, Software Requirements, 2nd Edition. Redmond, WA:
Microsoft Press, 2003.

[28] G. Wassermann and Z. Su, “Static detection of cross-site scripting
vulnerabilities,” in International Conference on Software
Engineering, Leipzig, Germany, 2008, pp. 171-180.

[29] W. Halfond and A. Orso, “AMNESIA: Analysis and monitoring for
NEutralizing SQL injection attacks,” in International Conference on
Automated Software Engineering, Long Beach, CA, 2005, pp. 174-
183.

[30] M. P. Marcus, M. A. Marcinkeiwicz, and B. Santorini, “Building a
large annotated corpus of Enligh: The Penn Treebank,” Journal of
Computational Linguistics, vol. 19, pp. 313-330, 1993.

[31] V. R. Basili and H. D. Rombach, “The TAME project: Towards
improvement-oriented software environments,” Software
Engineering, IEEE Transactions on, vol. 14, no. 6, pp. 758–773,
1988.

[32] H. A. Linstone and M. Turoff, “The Delphi Method: Techniques and
Applications,” Technometrics, vol. 18, no. 3, p. 363, 2002.

[33] HHS Press Office, “ONC Issues Final Rule to Establish the
Temporary Certification Program for Electronic Health Record
Technology,” 2010.

[34] J. L. Fleiss, “Measuring nominal scale agreement among many
raters.,” Psychological Bulletin, vol. 76, no. 5, p. 378, 1971.

[35] J. R. Landis and G. G. Koch, “The measurement of observer
agreement for categorical data,” Biometrics, pp. 159–174, 1977.

[36] J. F. Box, “Guinness, Gosset, Fisher, and Small Samples,” Statistical
Science, vol. 2, no. 1, pp. 45-52, Feb. 1987.

[37] S. S. Stevens, “On the Theory of Scales of Measurement,” Science,
vol. 103, no. 2684, pp. 677 -680, Jun. 1946.

[38] K. Gwet, “Handbook of inter-rater reliability , The definitive guide
to measuring the extent of agreement among multiple raters,”
Advanced Analytics, LLC, Gaithersburg, MD, 2010.

