
iTrust Electronic Health Care System:

A Case Study

Andrew Meneely, Ben Smith, Laurie Williams

Department of Computer Science

North Carolina State University

890 Oval Drive, Engineering Building 2, Room 3272

Campus Box 8206

Raleigh, NC 27695-8206 USA

{apmeneel, bhsmith3, lawilli3}@ncsu.edu

1 Introduction

Electronic health record (EHR) systems present a formidable “trustworthiness”

challenge because people’s health records, which are transmitted and protected by

these systems, are just as valuable to a myriad of attackers as they are to health

care practitioners. Major initiatives in EHR adoption and increased sharing of

health information raise significant challenges for protecting the privacy of pa-

tients' health information.

The United States is pursuing the vision of the National Health Information Net-

work (NHIN) in which the electronic health records of the American people are

passed between sometimes-competing health care providers. The American Re-

covery and Reinvestment Act of 2009 (ARRA) [1] provides $34 billion of incen-

tives to health care providers to deploy a government-approved EHR. The ARRA

will, by 2014, impose penalties on those who do not. As a result, the use of EHR

systems is likely to proliferate in the US in the next four years.

Dr. Laurie Williams created iTrust in 2005 as a course project for undergraduates

in North Carolina State University’s Software Engineering course. iTrust is in-

tended as a patient-centric application for maintaining an EHR. An ideal health

care system combines medical information from multiple sources to provide a

summary or detail view of the history of a particular patient in a way that is useful

to the health care practitioner.

iTrust is not intended to fulfill the requirements set forth to be approved by the

government, nor is it intended for use by practitioners in the field of medicine. The

2

primary goal for the project is to provide software engineering students with a pro-

ject with real-world relevance and enough depth and psychological complexity as

to mimic industrial systems that students may encounter while working in the

software industry. Additionally, iTrust provides an educational testbed for under-

standing the importance of security and privacy requirements. iTrust is particular-

ly focused with maintaining the privacy standards set forth in the HIPAA Security

and Privacy Rules [2].

The notion that a software developer’s role is often to maintain, test, and refine

software rather than creating it “from scratch” is a unique learning objective for

students at North Carolina State. For the past five years, each semester students in

the undergraduate software engineering course enhance the project deemed to be

the best from the prior semester. Refactoring of iTrust by graduate students often

occurs during the summer. As such, students must learn the code base of more

than 10,000 lines of Java Server Page code to make required enhancements.

This chapter highlights the key pieces of iTrust’s project artifacts that pertain to

traceability and describes the project in detail. The version of iTrust we are de-

scribing in this chapter is v10.0, which was released in the August 8th, 2010, and

built from requirements specification v18. The source code for this project, as

well as all the artifacts we describe in this chapter are available from iTrust’s

homepage1. The iTrust project consists of the following artifacts:

 Source code, including:

o Production source code (Java, Java Server Pages)

o Automated test code

 Testing documents, including:

o Black box test plan

o Acceptance test plan

o Test data

 Requirements, including sections describing:

o System Roles

o Use cases

o Non-functional requirements and constraints

o Data field formats

o Use case tracing from requirements to JSP pages

 Traceability Matrix

The rest of this chapter is organized as follows. Section 2 focuses on iTrust as a

project and how the team develops and maintains it. Section 3 describes an over-

view of the iTrust functionality. Section 4 describes the architecture and organ-

1 http://realsearchgroup.com/iTrust

3

ziation of the iTrust system. Section 5 describes the traceability provided by the

project’s maintainers, and Section 6 summarizes the chapter.

2 iTrust Project

iTrust is an active team project for undergraduate students in North Carolina State

University’s Software Engineering course. Dr. Laurie Williams conceived the

project in the Fall of 2005 and the project has been released to undergraduate and

graduate students at North Carolina State for the following five years (10 semes-

ters). As a part of their homework assignments, students in the undergraduate

Software Engineering course as well as the graduate Software Testing course are

required to perform maintenance and feature additions to iTrust.

In between semesters, the project administrators (typically graduate students) per-

form a “housekeeping” procedure. The graduate students spend approximately one

to two weeks on housekeeping, and the procedure entails one or more of the fol-

lowing:

 Updating the automated test plan, which consists of improving the

coverage and accuracy of JUnit and system-level integration testing.

 Fixing or clarifying the documentation of the iTrust code, which con-

sists of Javadoc that explains the functionality and use of each Java class.

 Discussions on the future of the project, including possible architectur-

al design changes, new decisions on technologies to use for testing, and

other high-level decisions that would be infeasible during a semester.

 Minor features, which often involve removing or adding functionality

that students have complained about but not changed, or functionality

that would be required to prepare the system for assignments in the up-

coming semester.

 Cosmetic changes, primarily involving editing the style sheets and Java

Server Pages to improve the user interface of the system.

 Refactoring, which has often been major, involving a complete redesign

of the system, or sometimes minor, such as implementing and redesign-

ing a component of the system to be more amenable to future changes

and development.

Table 1 presents measurements on the source lines of code and number of Java

classes or JSP files that make up the iTrust code base.

4

Table 1: iTrust project size

Component Number of Files LOC#

Production Classes 226 14,570

Java Server Pages 135 12,942

Unit Tests 244 11,936

HTTP Tests 50 4,146

The iTrust requirements v18 contains 40 functional requirements, six non-

functional requirements, and eight constraints. iTrust v11 was released for down-

load from SourceForge on August 8th, 2010. Since students were the primary de-

velopers for iTrust, there has been no public feedback on the project, although the

install base is rather large. Since this release date, iTrust v11 has been download-

ed from SourceForge 394 times.

3 iTrust Functionality

We designed iTrust to be a patient-centric application for maintaining an electron-

ic health record. An ideal health record combines medical information from mul-

tiple sources to provide a summary or detail view of the history of a particular pa-

tient in a way that is useful to the health care practitioner. iTrust is particularly

focused with maintaining the privacy standards set forth in the HIPAA Security

and Privacy Rules [2]. In addition to maintaining the patient’s personal infor-

mation and health history, iTrust maintains a comprehensive transaction log. The

transaction log, which can be used for repudiation and to track the actual opera-

tional profile, contains 53 different high-level transaction types that include view-

ing patients’ information, sending reminders, and adding a prescription. The pa-

tient can view a list of which health care professionals have viewed his or her

medical information upon login. Also, iTrust has a focus on providing health care

providers with dynamically determined information regarding a patient’s chronic

disease risk factors including diabetes and heart disease. Finally, iTrust allows a

health care professional to view trend information about patients’ causes of

death. Often iTrust requirements are obtained from the US Department of Health

and Human Services (HHS) use cases [http://www.hhs.gov/healthit/usecases/];

those that are obtained from HHS reference the use cases. The remaining re-

quirements are developed in a creative process by the teaching staff, with the in-

tent of covering the software engineering curriculum.

about:blank

5

3.1 System Roles

iTrust contains eight roles in its role-based access control system. The role of a

user determines their viewing and editing capabilities.

 Patient: When an American infant is born or a foreigner requests medi-

cal care, each is assigned a medical identification number and password.

Then, this person's electronic records are accessible via the iTrust Medi-

cal Records system.

 Administrator: The administrator assigns medical identification num-

bers and passwords to LHCPs. [Note: for simplicity of the project, an

administrator is added by directly entering the administrator into the da-

tabase by an administrator that has access to the database.]

 Licensed Health Care Professional (LHCP): A licensed health care

professional that is allowed by a particular patient to view all approved

medical records. In general, a patient does not know this non-designated

health care professional, such as an emergency room doctor, and the set

of approved records may be smaller than that granted to a designated li-

censed health care professional.

 Designated Licensed Health Care Professional (DLHCP): A licensed

health care professional that is allowed by a particular patient to view all

approved medical records. Any LHCP can be a DLHCP to some patients

(with whom he/she has an established relationship) and an LHCP to oth-

ers (whom he/she has never/rarely seen before).

 Emergency Responder (ER): Police, Fire, Emergency Medical Techni-

cians (EMTs), and other medically trained emergency responders who

provide care while at, or in transport from, the site of an emergency (re-

ferred to as “on site care providers” by Department of Health and Human

Services Emergency Responder Electronic Health Record Use Case [3]).

 Unlicensed Authorized Personnel (UAP): A health care worker such as

a medical secretary, laboratory technician, case manager, care coordina-

tor, or other authorized clerical-type personnel. An unlicensed personnel

can enter and edit demographic information, diagnosis, office visit notes

and other medical information, and can view records.

 Personal Representative: A person legally authorized to make health

care decisions on an individual's behalf or to act for a deceased individu-

al. When a person logs into iTrust, if he or she is a personal representa-

tive, they view their own records or those of the person/people they are

representing. (For example, a mother is a personal health representative

for her children and could choose herself and any one of her children up-

on logging into iTrust.)

 Public Health Agent: A person legally authorized view and respond to

aggregated reports of adverse events.

6

 Software Tester: An information technology worker who tests the iTrust

Medical Records system. Of particular interest to the software tester is

the operational profile information which informs him/her of the fre-

quency of use of the features of the system.

3.2 Patient-Centered Functionality

One of the unique characteristics of iTrust is its patient-centered functionality

where patients can log into the system to view their own records and perform a va-

riety of tasks.

The primary way of tracking care for a given patient is through office visits. An

office visit represents a specific consultation with an LHCP on a specific date in a

specific location. Various standardized health care codes are linked to office visits,

including diagnoses, immunizations, procedures, prescriptions, and general de-

mographics such as height and weight. The LHCP logs the information for a given

office visit, and the patient can view the records for of his or her previous office

visits. Patients can also take a satisfaction survey on the LHCP, which is aggregat-

ed for other patients in search for an LHCP.

In addition to office visit tracking, patients have access to several forms of audita-

bility. iTrust takes data provenance very seriously, so all access and changes to pa-

tient records are permanently logged. Patients are presented with an activity feed

upon logging in to iTrust, and can configure email alerts when their records have

been accessed or changed.

Lastly, iTrust focuses on providing informative feedback to both patients and

LHCPs. Patients are shown potential risk factors on their record, such as for diabe-

tes or heart disease. High risk patients who have not had a recent office visit are

also alerted. LHCPs can also request biosurveillance to detect potential epidemics.

The epidemic detection feature uses statistical modeling to determine an abnormal

number of diagnoses for a given location. Additionally, LHCPs can view cause-

of-death trends for a given location.

The requirements document in iTrust is a use-case based specification as shown in

Figure 1.

7

Figure 1. High-level Overview of the iTrust Use Cases

The requirements specification breaks down into the following sections:

 System Roles (described in Section 3.1)

 Use cases

 Non-functional requirements & constraints

8

 Data field formats

Each use case represents a small piece of functionality that students implemented

in a two week iteration. The project administrators wrote the use cases in terms of

the roles to imply the access controls surrounding the feature. Each use case has a

precondition describing what conditions need to be met prior to accessing the fea-

ture (e.g. authentication). The main flow of the use case provides a high-level

overview of the feature from the perspective of what the user does. The main flow

of the use case references different sub-flows of the use case that provide added

detail on the different events of the feature (e.g. the flow of events for when a pa-

tient is deceased). Lastly, each use case contains an alternative flow that describes

the behavior of the feature outside of typical functionality (e.g. when the user en-

ters wrong data). The requirements document also contains a reference from each

sub-flow to the web page implementing that functionality. For an example of a use

case, see the “Traceability in iTrust” section.

After the use cases, the rest of the document comprises of non-functional require-

ments and constraints. The non-functional requirements describe limitations that

all features must adhere to. For example, all features must adhere to HIPAA

standards. The constraints section covers the development process, such as the

programming language and coding standards. iTrust was written in Java 1.5, and

was designed to work with Tomcat v5.5.27 and MySQL 5.0.

The data field formats section covers all of the inputs to the iTrust system and how

the field can be validated. For example, the data fields section defines which char-

acters are allowed in a patient’s name. Many data fields are defined according to

common health care standards. iTrust uses the following standard medical codes:

 ICD9CM for diagnoses

 CPT for procedures

 NDC for drug prescriptions

The iTrust requirements document is stored in a wiki format online. Storing the

document in a wiki allows the requirements to be edited in a central location by

authorized project maintainers. Each revision of the requirements document is re-

tained so that the entire history of the document is preserved. Using the “diff” fea-

ture of the wiki also provides students with the ability to view what has recently

changed in the requirements document without having to find changes manually.

9

4 iTrust Architecture

The iTrust source code is designed around the Model-View-Controller design pat-

tern [4]. The goal of this organization is to separate the logic associated with the

user interface (i.e. the “view”) from the logic of the persistent storage (i.e. the

“model”), while organizing most of the complex business logic in one place (i.e.

the “controller”). In iTrust, the view is implemented in JavaServer Pages (JSPs),

the controller is implemented in Java, and the model is implemented in SQL and

Java. An overview of the iTrust architecture can be found in Figure 2.

4.1 Source Code Organization

View/JSPs. The primary purpose of the JSPs is to provide a web-based user inter-

face. Each JSP contains Java code, HTML, and potentially some Javascript. Each

10

JSP has a one-to-one mapping to an action class. The JSP instantiate the Action

class

Controller. The overall purpose of the controller in iTrust is to provide a bridge

between the user experience and the persistent storage of the database. Most of the

complex logic behind validating data, and processing database query results are

implemented in the controller.

The primary classes in the controller are action classes. Representing specific

functionality in iTrust, the purpose of an action class is to delegate responsibility

to the appropriate classes. Action classes serve as thin mediators between the user

interface and the database and business logic. The responsibilities of action classes

include:

 Delegating any input validation to a Validator.

 Logging transactions for auditability

 Delegating any custom business logic, such as risk factor calculations

 Delegating database interaction

 Handling exceptions in a secure manner

In addition to action classes, the controller contains validators. The sole purpose

of validators is to validate any input brought into the system. Since security is a

high priority in iTrust, the validators operate on using both whitelist and blacklist

techniques for checking input. Additionally, the validators are designed to aggre-

gate all errors in input so that the user is given a full report of all the problems

with the input.

Lastly, the controller contains several classes with custom business logic. The cus-

tom business logic classes are a set miscellaneous Java classes designed for specif-

ic use cases. For example, Use Case 14 (UC14) is a feature for determining if a

patient is at risk for several risk factors. Many of the queries involved in UC14 are

specific to certain risk factors (e.g. having a viral infections during childhood), so

the UC14 requires its own business logic.

Model. The model involves the all of the logic related to persistent storage in

iTrust. Beans are placeholders for data related to an iTrust entity (e.g. Patient).

Beans have minimal functionality other than storing data. Other supporting classes

load beans from database result sets, validate beans based on input, or any other

custom logic needed.

The relational database is the sole storage mechanism for iTrust. The database

stores all persistent information, including patient records, immunizations, office

visits, and transaction logs. The database schema is defined by a set of custom

scripts found in the source code tree. The database for iTrust does not contain any

11

foreign keys, as the students who use iTrust do not usually have a background in

relational databases and would not be able to debug foreign key constraint viola-

tions.

To interact with the database, iTrust employs database access objects (DAOs).

DAOs are Java objects that interact with the iTrust relational database. Action

classes will typically use DAOs to store and query the database. DAOs provide a

set of common queries required by the action classes so that database query logic

is contained to the DAO layer. Every DAO assumes that the incoming data is val-

id and any exception is handled by the Action classes. Connections to the DAOs

are handled by the DAOFactory, which is a singleton class that utilizes a database

connection pool for better performance and reliability. By convention, each data-

base entity maps to a single Database Access Object and a single Bean.

4.2 Testing Artifacts

iTrust contains both automated and manual testing artifacts. All testing artifacts

are constantly maintained throughout the development process.

Black Box Test Plan. As a part of their assignments in the graduate and under-

graduate software engineering courses, students are required to maintain and de-

velop manual, black box test cases for the functionality of iTrust. The black box

test plan is intended to be executed by a software tester using a web browser with

no background in the project or how it can be used. The black box test plan is in-

tended to cover each use case and sub-flow, including the exceptional or alterna-

tive flow cases.

A subset of the black box test plan is the acceptance test plan. The acceptance test

plan is a set of black box, manual test cases that can be executed with passing re-

sults by the iTrust customer. When a new use case is developed for a course as-

signment, the instructors of the software engineering course develop an ac-

ceptance test case that corresponds to the use case. The acceptance test plan acts

as a tool for grading how well students performed the assignment as well as

providing a clarification of certain details of the specification that may be lacking

from the requirements specification. Students are then responsible for adding addi-

tional black box tests for each use case flow.

Automated Unit Tests. The goal of the unit tests is to test individual iTrust func-

tionality at the Java class level. Students are expected to test both regular func-

tionality and boundary cases for virtually every unit in the iTrust system. When

students are assigned faults to fix, they are required to write an automated unit test

to ensure that the fault remains fixed. As the iTrust code is being developed, stu-

12

dents are required to maintain 80% line coverage of all Java classes. Between se-

mesters, the automated unit test plan is improved and maintained such that 80%

coverage is maintained on all relevant classes if the students had not done so. Stu-

dents are encouraged, but not required to use a test-driven approach to writing unit

tests. iTrust uses JUnit for our automated unit tests, and EclEmma for code cover-

age in an Eclipse environment.

iTrust also contains a number of supporting classes to aid the automated testing

process. A test database is set up clean before each unit test on database function-

ality (i.e. DAO classes), and the test data is a standard data set across all student

projects.

There are some packages and classes of the iTrust Java classes for which unit test-

ing does not make sense or is not applicable. The following types of classes are

excluded from the 80% coverage requirement:

 The Server Package, which contains Java classes that interface with the

Apache Tomcat API to provide session time out functionality and other

web-server specific features.

 Test Utilities, which provide developer-friendly methods for inserting

the correct test data into the database.

 Tag Classes, which provide custom JSP tags for data fields such as the

US state the patient lives in.

Automated HTTP Tests. The automated HTTP tests simulate a user using iTrust

in an web browser. Using HTTPUnit2, the automated HTTP tests execute on a ful-

ly-deployed iTrust system by crafting HTTP requests and checking the responses.

As opposed to the automated unit tests, the automated HTTP tests are intended for

regression testing. Students are required to implement HTTP tests based on the

acceptance test plan. Thus, each acceptance test case is represent by at least one

HTTP test. Students also automate security penetration testing using HTTP tests.

5 Traceability in iTrust

The iTrust project administrators maintain multiple traceability matrices amongst

the artifacts. The main three artifacts that are involved in tracing are:

 Black box test plan

2 http://httpunit.sourceforge.net/

13

 Requirements document

 System archetypes (e.g. JSPs, Actions, Validators, DAOs)

Figure 3 shows an overview of how the test plan, requirements, and system arche-

types are traced to each other. The requirements document contains sub-sections

for each use case (UC) that trace to the implementing JSP. Students can use this

traceability analysis to find the place in the code that implements a given require-

ment for comprehending the code as well as improved testing. Additionally, the

whole traceability matrix is available for students on the wiki for posterity.

Figure 3. Traceability Overview

To construct the tracing, a software engineering graduate student conducted a

manual traceability analysis on iTrust. The procedure was as follows:

1. Examine the first (or next) use case sub-flow in the iTrust requirements

document. Record the unique identifier of the use case. For example,

UC1S3.

2. Manually perform the action described in the use case. Record the rela-

tive URL in the browser window along with the use case and sub-flow.

For example /hcp-uap/addPatient.jsp. The observed URLs correspond to

JSP files (e.g. addPatient.jsp) contained within the iTrust code base.

3. If the use case cannot be performed, or does not involve any JSPs, enter

“No links” for the use case and sub-flow.

14

4. Inspect the JSP code for the recorded URL. If more than one JSP is in-

volved in executing the described action, for instance when more than

one URL is observed in the browser window while executing the action,

record each JSP separately on its own line with a trace to the use case and

sub-flow in question.

5. Record DAOs, Action classes and Validators separately with their own

trace to the sub-flow and use case in question.

6. Return to Step 1.

For an extended example of this traceability analysis, consider iTrust Use Case 1

sub-flow 1.

UC1. Create and disable patients use case

Preconditions:

The iTrust HCP has authenticated himself or herself in the iTrust Medical Records

system.

Main Flow:

An HCP creates patients and disables patients. The create/disable patients and

HCP transaction is logged.

Sub-flows:

 [S1] The HCP enters a patient as a new user of iTrust Medical Records sys-

tem. Only the name and email are is provided. An email with The patient's as-

signed MID and a secret key (the initial password) is personally provided to

the user, with which the user can reset his/her password. The HCP can edit

the patient with all initial values (except patient MID) defaulting to null

and/or 0 as appropriate. Patient MID should be the number assigned when the

patient is added to the system and cannot be edited. The HCP does not have

the ability to enter/edit/view the patient's security question/password.

 [S2] The HCP provides the MID of a patient for whom he/she wants to disa-

ble. The HCP provides a deceased date. An optional diagnosis code is en-

tered as the cause of death.

Table 2. Traceability Results for Use Case 1 Sub-flow 1

Use Case Subflow Source Code

UC1S1 /auth/hcp-uap/addPatient.jsp

UC1S1 AddPatientAction().addPatient()

UC1S1 PatientDAO.addEmptyPatient()

UC1S1 AuthDAO.addUser()

UC1S1 PatientDAO.editPatient()

UC1S1 TransactionDAO.logTransaction()

UC1S2 No link

15

iTrust has a separately maintained list of manual black box test cases that students

and administrators maintain. The black box test plan contained traceability to the

requirements specification before the traceability analysis described in this chapter

was complete. Students created and developed black box tests for the project as a

part of their course requirements and included the use case and sub-flow their test

case was based upon when creating the test.

This traceability analysis procedure was scoped for the purposes of this case

study, and is limited in the following ways:

1. The traceability was conducted manually. We did not look at possible

automated approaches since we conducted the analysis exclusively for

this case study.

2. The matrix was not checked and confirmed by any other students. Anoth-

er researcher or developer performing the analysis may arrive at different

results.

From the 40 functional requirements in the iTrust requirements specification v18,

we elicited 199 use case sub flows that could potentially trace to portions of the

code. These 199 sub flows contained 609 separate links to 310 Java methods or

JSP files. Of the 199 use case sub flows, 38 did not trace to any code within the

iTrust project.

Although we traced the full list of 40 functional requirements, we excluded the set

of six non-functional requirements in v18 of the iTrust requirements specification.

The functional requirements typically traced to one or two components of each

layer of the iTrust architecture. The traceability of the non-functional requirements

in iTrust was less straightforward, however. Some of the non-functional require-

ments trace to every member of certain archetypes in iTrust (e.g. form validation),

and others have no direct target (e.g. enabling multiple simultaneous users to be

logged in).

6 Summary

iTrust is a patient-centered electronic health record web application used as an ed-

ucational project in graduate and undergraduate software engineering courses at

North Carolina State University. The software development project contains a use

case-based requirements document, a black box test plan, automated tests, and

source code. The project administrators maintain a manual traceability matrix

from the black box test plan to the requirements document, and from the require-

16

ments document to the source code. iTrust is an open source software project, and

all of its artifacts are publicly-available online.

7 References

[1] American Recovery and Reinvestment Act of 2009, U.S.C. 111-5, 2009.

[2] Health Insurance Portability and Accountability Act Privacy Rule.

http://www.hhs.gov/ocr/privacy/hipaa/administrative/privacyrule/index.ht

ml

[3] US Department of Health and Human Services ER Use Case

http://www.dhhs.gov/healthit/usecases/documents/EmergencyRespEHRU

seCase.pdf

[4] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides, Design Patterns:

Elements of Reusable Object-Oriented Software, 1st ed. Addison-Wesley

Professional, 1994.

