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Abstract 

Context: Researchers proposing a new metric have the burden of proof to demonstrate to the research 

community that the metric is acceptable in its intended use. This burden of proof is provided through the multi-

faceted, scientific, and objective process of software metrics validation. Over the last 40 years, however, 

researchers have debated what constitutes a “valid” metric. 

Aim: The debate over what constitutes a valid metric centers on software metrics validation criteria. The 

objective of this paper is to guide researchers in making sound contributions to the field of software engineering 

metrics by providing a practical summary of the metrics validation criteria found in the academic literature. 

Method:  We conducted a systematic literature review that began with 2,288 papers and ultimately focused on 

20 papers. After extracting 47 unique validation criteria from these 20 papers, we performed a comparative 

analysis to explore the relationships amongst the criteria. 

Results: Our 47 validation criteria represent a diverse view of what constitutes a valid metric. We present an 

analysis of the criteria’s categorization, relationships, advantages, and philosophical motivations behind the 

validation criteria. We then present a step-by-step process for selecting appropriate metrics validation criteria 

based on a metric’s intended use.  

Conclusions: The diversity of motivations and philosophies behind the 47 validation criteria indicates that 

metrics validation is complex. Researchers proposing new metrics should consider the applicability of the 

validation criteria in terms of our categorization and analysis. Rather than arbitrarily choosing validation criteria 

for each metric, researchers should choose criteria that can confirm that the metric is appropriate for its intended 

use by inspecting the advantages that different criteria provide. We conclude that metrics validation criteria 

provide answers to questions that researchers have about the merits and limitations of a metric. 
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1. Introduction 

Practitioners and researchers alike use software metrics to both improve and understand software products and 

the software development processes. The field of software metrics has a variety of applications including quality 

assessment, prediction, task planning, and research. Researchers proposing a new metric have the burden of 

proof to demonstrate to the research community that the metric is truly representative of the attribute it is 

intended to represent.  

But how do we, as a community, ensure that a metric is suitable and acceptable for its intended purpose? 

Without some formal system of rules for the determining the merits of a metric, the software engineering 

community could find itself flooded with metrics that lend no understanding to the state of the art. This system 

of rules for ensuring the worthiness of a metric is known as software metrics validation, and software 

engineering researchers have debated what constitutes validation for almost half a century.    

The community has not yet reached a consensus on this system of rules. Instead, software metrics researchers 

have often been proposing their own, specialized means of validation. This ad hoc approach to validation leads 

to results that cannot be generalized and to contributions that are not stated in a manner consistent with a 

standard form of metric validation. 

Before we look at where metric validation must go, we must look at where it has been. The metrics validation 

community has likely not reached a consensus because no researcher has provided a "proper discussion of 

relationships among the different approaches [to metric validation]" (Kitchenham, Pfleeger et al. 1995). The 

objective of this paper is to guide researchers in making sound contributions to the field of software engineering 

metrics by providing a practical summary of the metrics validation criteria found in the academic literature. We 

performed a systematic literature review, beginning with 2,288 potential peer-reviewed publications and 

ultimately focused on 20 publications that propose or indicate software metrics validation criteria. Our review is 

a useful guide for two audiences: 1) metrics researchers: software engineering researchers who propose, use, 

and validate new metrics; and 2) metric validation researchers: software engineering researchers seeking to 

propose methodologies, criteria, or frameworks for validating metrics. 

Metrics researchers will want to use this review as: 

• A reference guide. We have compiled a list of the unique criteria presented in the literature with definitions 

and examples. Additionally, metrics researchers can see where authors discuss the same criteria but with 

different vocabulary. 

• A source for threats to metric validity. Metrics researchers can consult our survey to enumerate the issues 

a given metric may encounter. Furthermore, this source acts as a guide on issues where the community 

disagrees or published criteria contradict each other. 

• A big picture. We present a hierarchical relationship among the criteria that can be used to gain an 

understanding of how a given criterion relates to the "big picture" of software metric validation. Our 

analysis of the philosophical motivations behind a validation criterion is helpful for understanding not only 

the criteria themselves, but the “spirit” of the criteria.  
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• Inspiration. The criteria that have been proposed can act as a set of guidelines to help inspire a new way of 

thinking about metrics. Our comparative analysis of the criteria introduces underlying, tacit concepts that all 

researchers should be aware of when considering new metrics. 

Software metrics validation researchers will want to use this review as: 

• A roadmap for current criteria. We provide the validation criteria that researchers can use to view how 

their proposals fit into the overall body of work on metric validation. 

• A call for discussion. In analyzing the validation criteria in the literature, we have summarized the 

discussion surrounding metric validation. We have found that this discussion has not concluded and wish to 

re-invigorate the discussion in the research community to help reach a consensus on what is meant by 

metric validity. 

• A direction for a standard. Understanding the categorization and the motivation of the validation criteria 

assists the metrics validation community in deciding on a standard set of criteria for validating a metric. 

• A guide for future criteria. The hierarchical relationship we discovered when comparing the criteria can 

serve as a tool for generating new metrics validation criteria. Areas of metric validation are missing in the 

overall hierarchy, and new criteria could be proposed that address these areas. 

This paper is organized as follows. In Section 2, we present the terms specific to this review and their 

definitions. Next, in Section 3 we present the process we used to conduct the review. We present the extracted 

criteria in Section 4 and the mapping of their relationships in Section 5.  Section 6 outlines the philosophies of 

the two opposing motivations behind the criteria.  In Section 7, we describe how to use a metric’s intended use 

to choose the appropriate validation criteria.  Finally, Section 8 concludes. 

2. Terms and Definitions  

During our review, we found many different usages and definitions for the same words, so we define our usage 

of these words in Section 2.1. Next, we define examples of metrics that we refer to throughout the paper in 

Section 2.2. 

2.1 Metric Terminology 

• Attribute: The specific characteristic of the entity being measured (IEEE 1990). For example, the attribute 

for a Lines of Code metric is "size".  

o Internal attribute:  Attributes that the product itself exhibits. For example, the size of code 

(ISO/IEC 1991) is an internal attribute. (Fenton and Kitchenham 1991).  

o External attribute: Attributes that are dependent on the behavior of the system. For example, the 

reliability of a system is an external attribute (ISO/IEC 1991). 

• Component: One of the parts that make up a software system. A component may be hardware or software 

and may be subdivided into other components (IEEE 1990). 
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• Failure: an event in which a system or system component does not perform a required function within 

specified limits (ISO/IEC 1991). 

• Fault: an incorrect step, process, or data definition in a computer program (ISO/IEC 1991).  

• Metric: a "quantitative scale and method which can be used to determine the value a feature takes for a 

specific software product" (IEEE 1990). Fenton (Fenton and Neil 2000), (Fenton 1994) explains that 

essentially any software metric is an attempt to measure or predict some attribute (internal or external) of 

some product, process, or resource. Fenton (Fenton and Kitchenham 1991) points out that metric has been 

used as: 

o a number derived from a product, process or resource; 

o a scale of measurement 

o an identifiable attribute (see above).  

Also, a metric measures the degree to which a system, component or process possesses a given 

attribute (see above) (IEEE 1990). An internal metric measures an internal attribute, and an external 

metric measures an external attribute. 

• Quality Factor: an attribute of software that contributes to the degree to which software possesses a 

desired combination of characteristics (Schneidewind 1992). 

• Statistical correlation: we use the term "statistical correlation" in the broad sense of one variable "co-

relating" with another, not to be confused with the correlation coefficients that are specific statistical tests 

used to estimate the correlation between two variables.  

• Validation: the ISO/IEC of definition of validation is "confirmation, through the provision of objective 

evidence, that the requirements for a specific intended use or application have been fulfilled" (ISO/IEC 

1991).  

2.2 Examples 

In our discussions throughout this paper, we use five examples of metrics to illustrate concepts found in the 

criteria. We list the referenced definitions for these metrics here:  

• Lines of Code (LOC) metric: the general notion of counting the number of lines of source code in a 

program, without prescribing a specific counting standard. 

• Cyclomatic Number: McCabe's cyclomatic complexity (McCabe 1976), which is based on the number of 

edges, nodes, and components in a program flow graph.  

• Code Churn: a measure of how much a unit of code has changed over a period of time, usually measured 

by the number of lines of code changed at each revision in the version control system (Elbaum and Munson 

1998).  
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• Static Analyzer: a tool that performs automated static analysis on source or binary code, such as FindBugs 

(N. Ayewah, D Hovemeyer et al. 2008). An automated static analysis tool is a program that analyzes 

another program's source code and reveals possible faults in the form of "warnings".  

• Code Coverage: the percentage of a structural entity that is executed by a given test set. For example 

statement coverage is the percentage of statements executed by the test suite.  

3. Methodology and Process 

Kitchenham recommends a procedure for conducting systematic literature reviews (Kitchenham 2004), which 

we follow for this review. One goal of a systematic literature review is "to provide a framework/background in 

order to appropriately position new research activities" (Kitchenham 2004). The following sub-sections focus on 

the bottom two tiers: gathering the literature and analyzing the literature. The process is broken down into two 

parts: planning the review (Section 3.1) and conducting the review (Section 3.2). 

3.1 Planning the Review 

To begin our systematic literature review, we conducted a preliminary mapping study to identify our research 

objective, based on Kitchenham’s systematic review process (Kitchenham 2004).  As a result of this mapping 

study, the objective of this paper is to guide researchers in making sound contributions to the field of software 

engineering metrics by providing a practical summary of the metrics validation criteria found in the academic 

literature.  

Kitchenham et al. (Kitchenham 2010) also conducted a preliminary mapping study in the field of software 

metrics. The Kitchenmham study focuses on influential metrics papers, while our study focuses on metric 

validation. Specifically, the Kitchenham study identifies the most influential papers in the software metrics 

literature by analyzing their citation counts. We focused on extracting metrics validation criteria from the 

literature to summarize and analyze the existing literature.  

The second step for planning a systematic literature review is to develop the search strategy, as a part of 

developing the review protocol (Kitchenham 2004). As recommended in Brereton, et al (Brereton, Kitchenham 

et al. 2007), we used the following search engines to conduct our review:  

Google Scholar (http://scholar.google.com) CiteSeerX (http://citeseerx.ist.psu.edu/) 

IEEExplore (http://ieeexplore.ieee.org) ACM Portal (http://portal.acm.org/portal.cfm) 

After narrowing our research objective to focus on the criteria for validating metrics, we decided on the 

following queries: 

• software AND engineering AND metrics 

• software AND metrics AND validation 

• software AND metrics AND evaluation 
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These search criteria capture a wide range of publications, so an overwhelming number of results were obtained 

with each search. Since reviewing all of the results was infeasible, we developed a stopping heuristic. We used 

our searches using the following method: 

1. For both of the search strings, run the search on all four search engines.  

2. Record the bibliographic information for any source not previously recorded that appeared to be about 

the validation (or evaluation) of software engineering metrics. This step was mostly based on title and 

type of publication. 

3. Continue through the search results until reaching 10 consecutive, irrelevant results. Since the search 

engines we used rank the results by relevance, we found this procedure to be effective at producing 

useful results. In most cases, the density of relevant titles steadily decreased as we examined each 

source. 

4. Otherwise, continue to the next set of 10 results (step 3). 

We created the form shown in Figure 1 to assess the quality of our primary sources and identify sources that fit 

our research objective. 

 Question Answer 
1. Are there clearly identifiable metrics validation criteria?  

• Does the paper contain one or more criteria that can be extracted?  
• Is this paper an examination of what should be required to make a 

software engineering metric valid?  
• Does this paper exhibit scientific objectiveness, or is it a "position 

paper"? If the paper is a position paper, reject it.  

Yes/No 

2. If the answer to 1 is No, then why should this paper be excluded from 
the study? List reasons. 

3. What are the metrics validation criteria or groups of criteria this paper 
describes? 

• Summarize each criterion into a single bullet point. 
• What is the motivation for this criterion? 
• Is this a single criterion, or a group of criteria? 
• Do the authors indicate this criterion as being necessary for 

validation or a desirable property? 

List the criteria. 

4. How is this criteria related to other criteria?    
• List the related criterion and its source.  
• Explain the rationale for the relationship  

o Establish why these criteria are related.  
o Establish that these criteria indeed are indeed opposing, or 

the same.  
o If these criteria conflict, do these criteria just oppose each 

other, or are they truly mutually exclusive? 
o If these criteria are similar, are they synonyms or is there a 

strong enough difference in their definition to warrant a new 
criterion?  

List the 
criterion, 

source, and 
explanation 

Figure 1:  Primary Source Full-Text Review Form.  
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3.2 Conducting the Initial Search 

The initial search consisted of a “first pass” (Section 3.2.1) through the titles, then a “second pass” (Section 

3.2.2) through the abstracts of the given titles. The “third pass” was through the full texts of the chosen sources 

(Section 3.2.3). 

3.2.1 First Pass: Authors and Titles 

In the first pass through the search results, we were as inclusive as possible because we did not read abstracts; 

we tracked only titles and authors. The procedure resulted in the data presented in Table 1. The total results 

column in Table 1 comes from the search engine's self-reported total number of results upon executing the 

query. The reviewed results column comes from executing the procedure in Section 3.1. The researchers are 

given code names: here, the first author is Researcher A and the second author is Researcher B. For example, 

Researcher B searched IEEExplore for "software AND metrics AND evaluation" and found a total of 1,836,783 

results. Researcher B iterated through each set of 10 results and collected the relevant titles and authors for these 

sources. Then, after 90 sources, the researcher saw a set of 10 results (numbers 90-100) with no relevant titles, 

and the researcher stopped.   

Table 1: Search engines, queries, and results for the first pass. 

Index / Search 
Engine 

Search String (Query) Total 
Results 

Reviewed Results Researcher 

Google 
Scholar 

software AND engineering AND metrics 125,000 270 B 

IEEExplore software AND engineering AND metrics 1,492 125 B 

CiteSeerX software AND engineering AND metrics 539,029 170 B 
ACM software AND engineering AND metrics 7,640 100 B 

Google 
Scholar 

software AND metrics AND validation 50,400 510 A 

IEEExplore software AND metrics AND validation 223 223 A 
ACM software AND metrics AND validation 2,430 300 A 

CiteSeerX software AND metrics AND validation 548,575 150 B 
Google 
Scholar 

software AND metrics AND evaluation 118,000 150 B 

IEEExplore software AND metrics AND evaluation 1,836,783 100 B 
CiteSeerX software AND metrics AND evaluation 26,953 90 B 

ACM software AND metrics AND evaluation 6,898 100 A 
Total  3,263,423 2,288 A & B 

Out of the 3 million sources returned by the search engines, we examined the titles of 2,288 sources. We 

accepted 536 of the 2,288 sources we saw in the search of step one based on relevance of the title. 

Several types of sources came up after completing the first pass of the initial search. Of the 536 sources found, 

47% were conference proceedings and 38% were journal papers the remaining 15% were books, technical 

reports, standards, presentations, and unknown. Since books are hard to locate, and are likely to present a review 

of literature themselves, we eliminated books from our review. We also eliminated sources that did not have any 

traceable bibliographic information, which only occurred in the searches of CiteSeerX. The next few phases of 

the search are summarized by Figure 2. 
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Figure 2: Overall view of the source-gathering procedure used in initial literature review 

Next, we voted to confirm the 536 titles for relevance. As prescribed by Brereton, et al. (Brereton, Kitchenham 

et al. 2007), Researcher A voted on whether the results found by Researcher B were relevant to the review, and 

vice versa. Researcher A collected 176 unique titles, of which Researcher B accepted 64 (thus eliminating 112). 

Researcher B collected 360 sources, of which Researcher A accepted 92 (thus eliminating 268). Thus, we 

accepted a total of 156 titles from the voting confirmation to proceed to the next phase of the review. 

3.2.2. Second Pass: Confirming the Abstracts. 

After confirming the titles, we gathered the abstracts for the 156 titles and each researcher voted whether the 

abstract was relevant or not with the revised criteria as shown in Table 2. Researcher A voted yes to 46 of 156 

abstracts and Researcher B voted yes to 59 of 156 abstracts. The researchers agreed on 102 abstracts and 

disagreed on 54. We held a meeting to form consensus on the 54 contested abstracts. Of the 54, we voted 40 

abstracts as irrelevant and 14 as relevant. This result, combined with the other consensus obtained by both 

researchers independently agreeing on the status of the abstracts resulted in 51 relevant abstracts total and 105 

irrelevant abstracts. 

Table 2: Second pass voting results 

Voter Keep Discard 
Researcher A 46 110 
Researcher B 59 97 

Overall Consensus 51 105 

The overall consensus on the abstracts, as determined above, was passed on to the Arbiter, the third author in 

this paper. As shown in Table 3, the Arbiter voted on the relevance of the 156 abstracts and indicated that 38 
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were relevant and 118 were irrelevant. The Arbiter agreed with the researchers' consensus for 121 abstracts and 

disagreed with the researchers on 35 abstracts. Another meeting was held to form overall consensus on the 

abstracts. Out of the 35 abstracts discussed at the meeting, the full research team (consisting of Researcher A, 

Researcher B, and the Arbiter) accepted 17 abstracts and rejected 18 abstracts. We accepted 44 abstracts total 

(rejecting 112), and proceeded to the next phase of the review. 

Table 3: Second pass voting with arbiter results 

Voter Keep Discard 
Researchers A & B 51 105 

Arbiter 38 118 
Overall Consensus 44 112 

3.2.3 Third Pass: Full Texts. 

The next phase of the search was to vote on the full text for each of the 44 sources whose abstract the research 

team agreed upon. The voting results of the full-text pass are shown in Table 4. Researcher A and Researcher B 

then voted on whether the source matched the criteria for the systematic literature review by completing the 

form shown in Figure 1 for each source. 

In this phase, the researchers agreed on 29 full texts, and disagreed on 15. The researchers held another meeting 

to discuss the full list of all 44 full texts. After forming consensus, 27 full texts were rejected, and 17 were 

accepted (note: we added three sources in the follow-up search described in Section 3.3). The notes gathered 

during the establishment of the chosen sources were used to develop the full list of 47 metrics validation criteria 

described in Section 4. 

Table 4: Full text third pass voting results 

Voter Yes (Keep) No (Discard) 
Researcher A 17 27 
Researcher B 16 28 

Agreed 29 15 
Overall Final Consensus 17 27 

In summary, we searched a population of over 3 million sources, examined 2,288 titles, and selected 536 

sources based on the relevance to our research objective. Of those 536 sources, we voted to confirm the 

relevance and were left with 156 relevant titles. Those 156 titles were confirmed for their abstract content by 

each researcher, and then the arbiter. We formed consensus on 44 relevant abstracts. The researchers then used 

the full texts of each of the 44 sources to decide on a consensus of 17 sources that were used to construct this 

review, and are listed in the next section.  

3.3. Conducting the Follow-Up Search 

After extracting data from the final 17 primary sources from the first search, we determined that in the interest 

of thoroughness we should conduct a second search based upon the references of our sources. The 17 sources 

for our study contained 548 unique references, which we used to conduct what is referred to as the "follow-up 

search". The titles were easier to exclude in the follow-up review because the research questions had been more 

solidly formulated, and the researchers had experience with knowing what papers were needed for the study. 
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The pass through the titles resulted in 22 publications. We then examined the abstracts for those 22 publications 

and found eight relevant sources. After reviewing the full text for these eight sources, we selected three sources 

that were relevant, bringing the total number papers included in our study to 20. None of the sources from the 

follow-up review contained new metrics validation criteria. We did, however, find additional support for metrics 

validation criteria we had already discovered. 

4. Extracting the Validation Criteria 

We analyzed each of the 20 sources and recorded all of the validation criteria presented by each source. After 

extracting all criteria from all sources, we combined identical criteria together, resulting in a list of 47 unique 

criteria. 

Our intention is not to indicate to the reader that validating a metric requires the satisfaction of all 47 validation 

criteria, nor that the reader can freely select which criteria apply to a specific situation. Rather, we intend the list 

presented in Figure 3 to act as both (i) a reference point for this paper and for future research; and (ii) an 

invitation the research community to continue the discussion of what should be required to designate a metric as 

valid. Therefore, the criteria in the list are not considered to be orthogonal to each other as we further explain in 

Section 6. 

We first summarize the 47 criteria in Figure 3 in alphabetical order. We further synthesize the resultant criteria 

in Section 5. 

 

Figure 3: List of all 47 validation criteria found in the review 

 

25. Monotonicity  
26. Metric Reliability  
27. Non-collinearity  
28. Non-exploitability  
29. Non-uniformity  
30. Notation validity  
31. Permutation validity  
32. Predictability  
33. Prediction system validity  
34. Process or Product Relevance  
35. Protocol validity  
36. Rank Consistency  
37. Renaming insensitivity  
38. Repeatability  
39. Representation condition  
40. Scale validity  
41. Stability  
42. Theoretical validity  
43. Trackability  
44. Transformation invariance  
45. Underlying theory validity  
46. Unit validity  
47. Usability  
 

1. A priori validity 
2. Actionability 
3. Appropriate Continuity 
4. Appropriate Granularity 
5. Association 
6. Attribute validity 
7. Causal model validity 
8. Causal relationship validity 
9. Content validity 
10. Construct validity 
11. Constructiveness 
12. Definition validity  
13. Discriminative power  
14. Dimensional consistency  
15. Economic productivity  
16. Empirical validity 
17. External validity  
18. Factor independence  
19. Improvement validity  
20. Instrument validity  
21. Increasing growth validity  
22. Interaction sensitivity  
23. Internal consistency  
24. Internal validity  
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For the rest of this paper, a reference to a number with a pound sign denotes a reference to one of these criteria 

(e.g. #30 refers to predictability). In Table 5 we present a matrix of the criteria by their numbers (see Figure 3), 

and the originating sources.  

Table 5. Matrix of criteria and their cited source 
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In the following list, the sentence after the name, in italics, is our definition of the criterion, as combined from 

each of the cited papers. Then, after the definition is a brief discussion of that specific criterion.  

1. A priori validity. A metric has a priori validity if the attributes in association are specified in advance of 

finding a correlation (Fenton 1994), (Courtney and Gustafson 1993), (Briand, Emam et al. 1995), (Baker, 

Bieman et al. 1990). A priori validity is often referred to in the converse as a "shotgun correlation" 

(Courtney and Gustafson 1993) where a correlation between a metric and a quality factor is found in a data 

set, then explained post hoc. If one examines enough metrics (discarding any lack of correlation), one could 

eventually find a statistically significant, yet fortuitous correlation. Instead, the authors point out that the 

hypothesis of a metric's meaning ought to precede finding a correlation.  

2. Actionability:  A metric has actionability if it allows a software manager to make an empirically informed 

decision based on the software product's status. (Fenton and Neil 2000), (Roche 1994) The metric should 

reflect some property of the software in a way that enables managers to make decisions during the software 

development lifecycle. Roche uses the terms "interpretative guidelines" and "recommendations for action" 

when discussing the actionability of a metric. We introduce the term "actionability" as our interpretation of 

the idea discussed by the authors.  

3. Appropriate Continuity: A metric has appropriate continuity if the metric is defined (or undefined) for all 

values according to the attribute being measured (Kitchenham, Pfleeger et al. 1995). Kitchenham et al. 

phrase this criterion as "the metric should not exhibit any unexpected discontinuities". Discontinuities can 

arise from fraction calculations where the denominator can be zero. For example, if one used the metric 

F/LOC (faults per line of code), one would need to define F/LOC for LOC=0, since the equation is 

discontinuous.  

4. Appropriate Granularity. A metric has appropriate granularity if the mapping from attribute to metric is 

not too finely- or coarsely-grained (Kitchenham, Pfleeger et al. 1995), (Weyuker 1988). This criterion is a 
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grouping of three of Weyuker's complexity criteria. Kitchenham et al. also discuss these three criteria, but 

in terms of all metrics (not just complexity). The three criteria could be grouped as fine, medium, and 

coarse granularity.   

a. A metric has fine granularity if there are only finitely many programs that can achieve a given 

measure. Weyuker's Property 2. For example, the cyclomatic number is not finely grained as 

one can create an infinite number of programs that have the same cyclomatic number. 

b. A metric has medium granularity if there are two programs that compute the same function, 

but have different measures. Weyuker's Property 4. This property is based on the idea that 

different programs can perform identical functionality with differing implementations and, 

therefore, result in different complexities. For example, cyclomatic complexity has medium 

granularity because one can write two programs that have different complexities, but still 

perform the same functionality. 

c. A metric has coarse granularity if two different programs can result in the same measure 

Weyuker's Property 3. That is, not every measurement needs to be unique to a specific 

program. The two programs can represent two different implementations altogether (not just 

renamings of each other) and can still have the same complexity value.  

5. Association:  A metric has association validity if it has a direct, linear statistical correlation with an 

external quality factor (Schneidewind 1991), (Schneidewind 1992), (Fenton 1994). We use the term 

"direct" to imply that the metric is measured without the use of a model (e.g. regression). Measurement of 

this criterion is typically performed by the Pearson correlation coefficient or the coefficient of 

determination (e.g. R2) in a linear regression. Fenton uses the term "external correlation" when discussing 

association validity. Note that Schneidewind and Fenton explicitly differentiate this term from "prediction" 

validity (#32). Association validity differs from predictability in that association does not separate training 

sets from test sets (e.g. using cross-validation), nor does association involve using a model.  

Conventionally, statisticians use the word “association” to denote a statistical dependence between two 

random variables, linear or not, and use the term “correlation” to denote a linear relationship (Rao 2007). 

6. Attribute validity:  A metric has attribute validity if the measurements correctly exhibit the attribute that 

the metric is intending to measure (Kitchenham, Pfleeger et al. 1995), (Baker, Bieman et al. 1990). 

Kitchenham's discussion of attribute validity focuses on the actual measurements of a metric. For example, 

if one were measuring the attribute validity of the "psychological complexity" of code, one might poll a 

group of developers and empirically evaluate their agreement.  

7. Causal model validity: A metric has causal model validity if it can be used in a causal model that explains 

a quality factor (Fenton and Neil 2000). If a metric can be used as a variable in a model of causality (e.g. 

Bayesian Belief Networks), then more credence can be given to the metric's ability to cause changes in an 

external quality factor. Note that a metric functioning as a variable within a causal model does not imply a 

causal relationship, but indicates a stronger possibility of a causal relationship. We note the distinction 

between causal model validity and causal relationship validity (see #8).     
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8. Causal relationship validity:  A metric has causal relationship validity if it has a causal relationship to an 

external quality factor (Roche 1994), (Curtis 1980). Rather than having only a statistical correlation with an 

external quality factor, the attribute measured by a metric must be shown to cause changes in the quality 

attribute by a properly designed and controlled experiment. For example, warnings from a perfect static 

analyzer that finds null dereferences could be used as a metric to predict null reference failures in a system 

because executing a fault causes a failure. Causal relationship validity is different from causal model 

validity (#7) because a causal model does have to dictate a relationship. Causal relationship validity is a 

more specific instance of causal model validity and provides stronger evidence for the effect the metric has 

on software quality.  

9. Content validity: A metric has content validity if it applies "thoroughly to the entire domain of interest" 

(Curtis 1980). A metric must capture the entire notion of an attribute to be considered valid. For example, 

McCabe's cyclomatic complexity number might be considered content invalid in the domain of 

"complexity" as it does not account for psychological complexity because obfuscating variable names does 

not affect cyclomatic complexity but does affect psychological complexity. Curtis uses the term "face valid" 

to refer to a metric broadly sampling a domain. 

10. Construct validity: A metric has construct validity if the gathering of a metric’s measurements is suitable 

for the definition of the targeted attribute. (Curtis 1980). The word “construct” in this sense refers to the 

tool, instrument, or procedure used to gather measurements. Curtis refers to construct validity as when “the 

operational definition yields data related to an abstract concept”. Showing that a metric does not have 

construct validity means showing that a specific implementation of a metric is not valid.  For example, a 

program or tool to measure LOC may incorrectly count lines, and would therefore lack construct validity.  

11. Constructiveness: A metric is constructive if it helps the researcher understand software quality (Cavano 

and McCall 1978). For example, if a metric measures the attribute of “size”, but is not correlated with 

quality (e.g. there are an equal number of high quality large components, and low quality small 

components), then the metric is not constructive. 

12. Definition Validity: A metric has definition validity if the metric definition is clear and unambiguous such 

that its collection can be implemented in a unique, deterministic way (Lincke and Lowe 2006) (Cavano and 

McCall 1978) (Roche 1994) (Bush and Fenton 1990; El Emam 2000). We use the term “deterministic” 

from Lincke et al. to mean that, given a definition of a metric, the measurement made would be consistent 

across all who implement the definition, implying full clarity and a lack of ambiguity. The term “unique” 

implies that, given a definition and an artifact, the metric result should be unique from all other 

measurements. Cavano calls this kind of definition “consistent” and “detailed”; Roche calls it “clear” and 

“unambiguous”; Bush calls this a “precise” definition.  

13. Discriminative Power:  A metric has discriminative power if it can show a difference between high-quality 

and low-quality components by examining components above/below a pre-determined critical value 

(Schneidewind 1991), (Schneidewind 1992). The discriminative power criterion is used to establish sets of 

metric values that should be considered “too dangerous” or “off limits”. For example, if the LOC metric has 

discriminative power for number of faults with a critical value of 100, then components with over 100 lines 

of code are more likely to have a dangerous number of faults than files with fewer than 100 lines of code.  
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14. Dimensional Consistency: A metric has dimensional consistency if the formulation of multiple metrics 

into a composite metric is performed by a scientifically well-understood mathematical function 

(Kitchenham, Pfleeger et al. 1995), (Henderson-Sellers 1996). Metrics require dimensional consistency if 

they are to be used as composite measurements that consist of fundamental measures that contain different 

units (e.g. person hours). For example, converting from a vector to a scalar loses vital information about the 

entity. Kitchenham uses the example of multiplying the X,Y position coordinates on a Cartesian plane is 

meaningless because, while we would obtain a value, we would not know what attribute is being measured.  

15. Economic Productivity: A metric has economic productivity if using the metric quantifies a relationship 

between cost and benefit (Jones 1994). That is, a metric is considered invalid if it does not result in saving 

money in the long run. Jones stipulates that gathering and collecting a metric must not be cost-prohibitive. 

Furthermore, achieving “good” scores of the metric must not also be cost-prohibitive. For example, 

removing all known faults in a software system may be cost-prohibitive, even if it would improve a 

“number of known faults” metric. We introduce the term "economic productivity" as an interpretation of 

Jones' arguments against commonly-used metrics.  

16. Empirical validity: A metric has empirical validity if experimentation and/or observation corroborates 

either (i) the intended measurement of a metric; or (ii) the relationship between the metric and an external 

software quality factor (Kitchenham, Pfleeger et al. 1995), (Briand, Emam et al. 1995). Empirical validation 

is typically performed with statistical analysis of data obtained via experiments or project history. 

17. External validity:  A metric has external validity if it is related in some way (e.g. by prediction, 

association or causality) with an external quality factor (El Emam 2000), (Briand, Emam et al. 1995), 

(Baker, Bieman et al. 1990), (Fenton 1994). External validity is a broad category of validation criteria. For 

example, if one showed that files with a high LOC is associated with having many faults, then LOC would 

be considered externally valid. However, correlating LOC with another internal metric, such as code churn, 

would not be considered external validation. El Emam equates the term “external” with “empirical” 

validation (El Emam 2000), and we distinguish the two terms. For an in-depth discussion on the difference, 

see Section 5.1.  

18. Factor Independence: A metric has factor independence if the individual measurements used in the metric 

formulation are independent of each other (Roche 1994). Roche describes factor independence as an 

“analytical principle” that applies when a metric is composed of several, individual measurements.  

19. Improvement validity: A metric has improvement validity if the metric is an improvement over existing 

metrics (El Emam 2000). The term “improvement” that El Emam uses denotes a broad range of possible 

improvements that a metric could have. Examples of improvements include ease of measurement, stronger 

association with a quality factor, or a closer representation to the attribute being measured.  

20. Instrument validity: A metric has instrument validity if the underlying measurement instrument is valid 

and properly calibrated (Kitchenham, Pfleeger et al. 1995). For example, consider a tool has been 

improperly implemented the definition for branch coverage; this tool, as an instrument, would be invalid. 

As a result, the data gathered from that tool (in this case, the poorly defined branch coverage) would also be 

considered invalid. 



16 

21. Increasing Growth validity: A metric has increasing growth validity if the metric increases when 

concatenating two entities together (Weyuker 1988). Weyuker's Property 9.  Said another way, a metric 

should never go down if one is concatenating code together. Note that this criterion requires a specific scale 

type, which is why Kitchenham et al. explicitly reject this criterion. For example, the code coverage for 

different program bodies should never decrease by concatenating two components together.    

22. Interaction Sensitivity:  A metric has interaction sensitivity if two components of a program result in 

different measures depending on how they interact with one another (Weyuker 1988). Weyuker's Property 

6. uses this criterion to discuss how components interact with one another, which can be specific to 

complexity, but might be a property that applies to other software metrics. For example, cyclomatic number 

is not concatenation sensitive as the cyclomatic number of a concatenation of program bodies is always 

equal to the sum of the individual cyclomatic numbers of each body. In other words, cyclomatic number 

does not take into account the interaction between components, only individual components. The term 

“concatenation sensitive” is not used explicitly by Weyuker, but is our interpretation based on the author's 

mathematical definition.  

23. Internal consistency: A metric has internal consistency if "all of the elementary measurements of a metric 

are assessing the same construct and are inter-related" (Curtis 1980). Curtis also argues that a lack of 

internal consistency results in losing the ability to interpret the metric. For example, combining the idea of 

code complexity and the idea of code churn into a composite metric is not internally consistent because the 

notions of complexity and churn are not directly conceptually related. 

24. Internal validity: A metric has internal validity if the metric correctly measures the attribute it purports to 

measure (El Emam 2000) (Baker, Bieman et al. 1990). Internal validity is a broad category of validation 

criteria that is solely concerned with the metric itself, regardless of being associated with an external quality 

factor. Most authors of our sources discuss some form of internal validity, however, many will use the term 

"theoretical" synonymously with "internal". For a deeper discussion on this issue, see Section 5.1. 

25. Monotonicity: A metric has monotonicity if the components of a program are no more complex than the 

entire program (Weyuker 1988).  Weyuker's Property 5.  For example, if a module has one highly complex 

method, then the entire module should be at least as complex as that method. This notion applies to other 

metrics as well, not just complexity metrics.  

26. Metric Reliability: A metric has reliability if the measurements are "accurate and repeatable" (Curtis 

1980). Curtis argues that a "reliable" metric ought have little random error, regardless of how the metric is 

implemented. For example, cyclomatic complexity is a more reliable measure than psychological 

complexity because cyclomatic complexity is deterministically defined, whereas psychological complexity 

can only be evaluated through human perception. 

27. Non-collinearity: A metric has non-collinearity if it is still correlated with an external quality factor after 

controlling for confounding factors (El Emam 2000). For example, if a complexity metric was highly 

influenced by code size to the point where no extra variance is explained once code size was included, then 

the complexity metric is collinear (and therefore does not pass this criterion). 
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28. Non-exploitability: A metric exhibits non-exploitability if developers cannot manipulate a metric to obtain 

desired results (Cavano and McCall 1978). We introduce use the term “exploitability” to describe the 

phenomenon where people can manipulate a metric's measurements without changing the attribute being 

measured. For example, if LOC is being used as an effort metric, then a developer could start writing 

exceedingly verbose code to look more productive. Cavano uses the term “stability” when referring to non-

exploitability, which is not to be confused with other authors’ use of stability (#41). 

29. Non-uniformity: A metric has non-uniformity if it can produce different values for at least two different 

entities (Weyuker 1988). Weyuker's Property 1.  As Weyuker states, "A metric which rates all programs as 

equal is not really a measure".    

30. Notation validity: A metric has notation validity if the metric is reasoned about "mathematically with 

precise, consistent notation" (Henderson-Sellers 1996). Henderson-Sellers argues that a metric cannot be 

validated by other researchers if the metric is not properly defined with correct, consistent, and 

unambiguous mathematical notation. Furthermore, a metric with an unclear definition could mislead other 

researchers to draw wrong conclusions about a metric. 

31. Permutation validity: A metric has permutation validity if the metric values are responsive to the order of 

the statements. (Weyuker 1988). Weyuker's Property 7. Her argument is that the interaction of statements in 

a program affects the notion of complexity, so permuting the statements in a program ought to affect the 

complexity of a program. 

32. Predictability:  A metric has predictability if it can be shown to predict values of an external quality factor 

with an acceptable level of accuracy (Fenton 1994), (Fenton and Kitchenham 1991),  (Schneidewind 1991), 

(Schneidewind 1992), (Curtis 1980), (Roche 1994), (Bush and Fenton 1990), (El Emam 2000). Most of the 

authors in our sources allude to some form of prediction as one way to validate a metric with an external 

quality factor. In each discussion, the authors indicate that showing a metric to be predictive implies that, 

historically, a metric could have been used to accurately assess quality in the system. The "acceptable" level 

of accuracy would change from process to process and must be interpreted according to the domain of 

interest. Note that the Fenton and Schneidewind specifically differentiate predictability from association 

(#5). 

33. Prediction System validity: A metric has prediction system validity if the metric is part of a model with 

procedures on how to use the model, which both must be specified before the study takes place (Baker, 

Bieman et al. 1990), (Fenton and Kitchenham 1991), (El Emam 2000). The authors define a prediction 

system as involving "a mathematical model and prediction procedures for it". A prediction system has 

metrics in addition to models, and a prediction system can be validated. However, the authors emphatically 

stress that a metric does not always need to be part of a prediction system to be validated. Showing that a 

metric has predictability (#32) does not necessarily show that it can be useful for predicting on the dataset 

for any project, only that is has been shown to be useful for prediction in at least one project. 

34. Process or Product Relevance: A metric has product or process relevance if it can be “tailored to specific 

products or processes” (Roche 1994), (Briand, Emam et al. 1996), (Schneidewind 1991), (Schneidewind 

1992). Roche argues that metrics validated in one domain ought to be transferable to other domains. 
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35. Protocol validity: A metric has protocol validity if it is measured by a widely accepted measurement 

protocol (Kitchenham, Pfleeger et al. 1995). The example that Kitchenham et al. provides is measuring a 

person's height: the agreed-upon protocol is from the feet to the head, and not including an upstretched arm. 

36. Rank Consistency:  A metric has rank consistency if it shares the same ranking as a quality factor 

(Schneidewind 1991), (Schneidewind 1992). For example, if code churn were to have rank consistency with 

number of faults, then the ranking of files by code churn would match the ranking of files by number of 

faults. The rank consistency validation criterion is meant for direct relationships.  

37. Renaming Insensitivity: A metric has renaming insensitivity if renaming parts of a program does not 

affect the metric's measurement (Weyuker 1988).  Weyuker's Property 8.  For example, if one were to 

rename all of the variables in a program, the complexity value should not change. Although Weyuker 

specified this property for complexity, the metric can be generalized to other metrics. 

38. Repeatability: A metric has repeatability if the metric is shown to be empirically valid for multiple different 

projects or throughout the lifetime of one project (Schneidewind 1991), (Schneidewind 1992), (El Emam 

2000) Schneidewind defines the repeatability criterion so that one cannot make a claim of validation on 

simply one or two project case studies. While Schneidewind does not provide a concrete number, he implies 

that the number of projects required to obtain repeatability might differ from person to person depending on 

what they use the metric for. El Emam states "only when evidence has accumulated that a particular metric 

is valid across systems and across organizations can we draw general conclusions."  

39. Representation condition: A metric satisfies the representation condition if the attribute is a numerical 

characterization that preserves properties of both the attribute and the number system it maps to. (Fenton 

and Kitchenham 1991), (Kitchenham, Pfleeger et al. 1995), (Fenton 1994), (Bush and Fenton 1990), 

(Harman and Clark 2004), (Baker, Bieman et al. 1990). Under the representation condition, any property of 

the number system must appropriately map to a property of the attribute being measured (and vice versa). 

Fenton (Fenton 1994) describes the representation condition as a two-way correspondence between a metric 

and an attribute. Kitchenham (Kitchenham, Pfleeger et al. 1995) states that "intuitive understanding" of an 

attribute is preserved when mapping to a numerical system. All of the authors cite the representation 

condition from Measurement Theory, a scientific discipline not specific to software engineering. 

40. Scale validity: A metric has scale validity if it is defined on an explicit, appropriate scale such that all 

meaningful transformations of the metric are admissible (Briand, Emam et al. 1996), (Fenton and 

Kitchenham 1991), (Kitchenham, Pfleeger et al. 1995), (Fenton 1994), (El Emam 2000). The scales 

discussed are typically: nominal, ordinal, interval, ratio, and absolute. Each scale type denotes a specific set 

of transformations that dictate how the metric can be used. As one example, adding two values of a metric 

of nominal scale "Yes/No" is not admissible. As another example, the temperature Fahrenheit is of interval 

scale which has subtraction as an admissible transformation, meaning that the difference in temperature 

between 50 to 60 degrees and 60 to 70 degree are the same. Ratios, however, are not admissible on the 

interval scale, meaning that 50 degrees is not twice as hot as 25 degrees. Many of the sources also denote 

specific statistical tests that ought to be run in validating metrics of different scale types.  
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41. Stability: A metric has stability if it produces the same values "on repeated collections of data under 

similar circumstances" (El Emam 2000), (Curtis 1980), (Cavano and McCall 1978). One example of a 

metric that might not be fully stable is the number of failures in a system. Since the existence of a failure is 

ultimately a decision made by humans (especially in the case of validation failures), two humans may 

disagree on whether specific system behavior is a failure or not due to an ambiguous requirements 

specification. Cavano calls this “fidelity”. 

42. Theoretical validity: A metric has theoretical validity if it does not violate any necessary properties of the 

attribute being measured (Kitchenham, Pfleeger et al. 1995), (Briand, Emam et al. 1996), (Briand, Emam et 

al. 1995). Theoretical validity is a broad category of validation criteria that involve making arguments about 

the properties of a metric. Theoretical validation is usually performed using formal logic. Many authors use 

the term “theoretical” synonymous with “internal” validity (#24), however we differentiate the two. For a 

deeper discussion on this issue, see Section 5.1. 

43. Trackability: A metric has trackability if the metric changes as the external quality factor changes over 

time (Schneidewind 1991), (Schneidewind 1992). Schneidewind discusses using trackability to assess 

whether a component is improving, degrading, or stagnating in quality over time. In his words, the metric 

should “change in unison” with the external quality factor. Interestingly, according to Schneidewind’s 

definition, the metric should reflect the external quality factor in such a way that if the external quality 

factor changes, then the metric also changes in the same direction. For example, if a high cyclomatic 

number is shown to be trackable with the number of faults, then reducing the number of faults in a program 

(e.g. fixing the faults) should, in turn, reduce the complexity. 

44. Transformation Invariance. A metric has transformation invariance if it results in the same measurement 

for two semantically-equivalent programs (Harman and Clark 2004). We use the term "semantically 

equivalent" to mean that a compiler could potentially interpret two syntactically-different programs as the 

same. Harman et al. claim that if one were to make semantics-preserving changes to a program, then the 

value of the metric should not change. Weyuker's Renaming Insensitivity (#36) is one special case of 

semantic equivalence. However, two different implementations with indistinguishable results are not 

necessarily semantically equivalent. Note that the term “transformation” here is not to be confused with the 

admissible transformations mentioned in scale validity (#38); admissible transformations are 

transformations of numbers, and this criterion refers to transforming a program. 

45. Underlying theory validity: A metric has underlying theory validity if its construction is based upon an 

underlying theory that has validity within the domain of the application (El Emam 2000), (Roche 1994), 

(Kitchenham, Pfleeger et al. 1995), (Baker, Bieman et al. 1990). To consider a metric to be valid, there 

must be a valid theory that describes how the metric measures what it is supposed to measure. For example, 

the underlying theory behind code churn is that if code has been shown to change substantially in the 

version control system, then the project itself has undergone a substantial amount of change. We note here 

that underlying theory validity applies to both internal and external validity; but the difference in these 

cases is in how the theory is used. On the internal side, the underlying theory required for validity must 

state why the metric in question is worth measuring or why the metric is an accurate representation of the 
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attribute being measured from a theoretical standpoint. On the external side, the underlying theory is why a 

metric would be statistically associated with an external software quality factor (or external attribute).  

46. Unit validity: A metric has unit validity if the units used are an appropriate means of measuring the 

attribute (Kitchenham, Pfleeger et al. 1995), (Fenton 1994).  For example, fault rate may be used to 

measure program correctness or test case effectiveness (Kitchenham, Pfleeger et al. 1995).   

47. Usability: A metric has usability if it can be cost-effectively implemented in a quality assurance program 

(Cavano and McCall 1978). A metric must be feasibly collected within a process. For example, a metric 

that requires several months of computation might not be considered usable. 

5. Mapping the Validation Criteria 

The list of criteria we present in Section 4 is useful as a reference, but fully understanding the criteria involves 

looking at their interrelationships, similarities and differences.  Some criteria involve statistics, and some criteria 

involve proof of logic arguments.  Some criteria involve quality factors, and others do not. Some criteria 

constitute parts of other criteria.  In this section, we describe how we mapped our criteria into a categorization 

scheme. 

Our approach to mapping the validation criteria was a bottom-up process. Whenever we found criteria with 

similarities, we grouped the criteria together. In other cases, we noticed that some validation criteria are not 

atomic, but instead broad categories that can contain many other criteria. For example, internal validity (#24) 

cannot be atomically defined because assessing that a metric correctly measures the attribute it purports to 

measure is a notion that includes many criteria. Whenever we determined that one criterion was a specific 

instance of a separate, broader criterion, we marked the broad criterion as a category.   

In the mapping process, we found that all of our criteria groupings could be described by categories we had 

already discovered. Thus, we did not introduce new categories of validation criteria, we used only the categories 

referred to in the literature in our mapping process.  

The result of our mapping process was a categorization of the 47 criteria, as presented in Figure 4. An arrow 

between a criterion and a category indicates that the criterion is a part of or specific instance of that group (i.e. 

an “is a” relationship). Specific criteria are represented as boxes, categories of criteria are represented as ovals. 

The number in parentheses refers to the number of references that directly discussed the criterion.  

Our mapping represents the validation criteria and categories we found in the literature. We do not view this 

mapping to be a complete list of all possible criteria. Validating a metric by all the leaves of a super category of 

criteria does not always imply that the super category is validated. Thus, in any given category, a criterion may 

be presented in the future. For example, (shown in Figure 4) attribute validity may not be the only kind of 

empirical, internal validity, but is the only kind we have come across in our review. Additionally, empirical 

(#16) and theoretical (#42) required multiple categorizations that are described in detail in Section 5.1. 
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Figure 4: The 47 criteria, categorized with number of references in parentheses 

In the following sections, we describe our reasoning behind some of the major decisions we made in the 

mapping process. 

5.1 Internal/External vs. Theoretical/Empirical 

Beneath our top-level categories are theoretical validity (#42), and empirical validity (#16). While some authors 

equate the terms "internal" with "theoretical" and "empirical" with "external" (El Emam 2000) (Baker, Bieman 
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et al. 1990), we distinguish the ideas. We view internal and external validation as dealing with what is being 

validated, while theoretical and empirical validation deal with how a metric is validated. Specifically, internal 

validation deals with how well a metric measures an attribute, whereas as external validation relates a metric to 

a quality factor (i.e., another metric). Theoretical validation uses logic to argue formally whether a metric is 

valid or not, while empirical validation employs analysis of data from experimentation or observation. Several 

authors equate the terms because, as we have seen in our review, researchers typically perform internal 

validation theoretically and external validation empirically. One exception, however, is attribute validity (#6), 

which is an empirical way to validate a metric internally. 

The notion of an underlying theory (#45) appears in both the external, empirical and internal, theoretical 

categories. In each situation, the actual theory would be different. An underlying theory for internal validation 

would be about how a metric measures a given attribute, whereas the underlying theory in external validation 

would be about how one attribute relates to another attribute. 

5.2 Construct Validity 

Construct validity (#10) differs from internal and external in that it deals with how a metric is implemented and 

studied (i.e. the construct itself). The construct validity of a metric will differ from research project to research 

project. For example, one could have a metric that was internally valid and was externally valid, but the analysis 

may be wrong because of an incorrectly implemented algorithm (#20).  

Definition validity (#12) provides strong motivation for a separate category from internal (#24) and external 

(#17) validity. Definition validity deals with providing a clear, unambiguous, deterministically-defined metric. 

Many authors (Lincke and Lowe 2006), (Henderson-Sellers 1996), (Baker, Bieman et al. 1990), (El Emam 

2000), (Roche 1994) stress the importance of providing clear definitions for both the metrics and the analysis in 

metrics validation. Providing a valid metric definition (e.g. in a publication) allows that metric to be correctly 

reproduced so that it can be correctly studied and used by other researchers.  

5.3 Representation Condition and Internal, Theoretical Validity 

The representation condition (#39) is a mathematical property taken from Measurement Theory that deals with 

the relationship between a metric's attribute and the number system it maps to. Some authors (Fenton 1994), 

(Kitchenham, Pfleeger et al. 1995), (Baker, Bieman et al. 1990) claim that satisfying the representation 

condition is the same as internal, theoretical validity. However, we found several criteria that are not concerned 

directly with representation condition, but are internal and theoretical. For example, actionability (#2) can be 

satisfied by making a logical argument about the attribute being measured, but does not deal with the 

mathematical mapping between an attribute and the number system.  

5.4 Prediction, Causation, and External Validity 

The external, empirical validity category included all of the criteria that involved some sort of statistical analysis 

with a quality factor. Some of the authors (Baker, Bieman et al. 1990), (Fenton 1994), (Schneidewind 1992) 

point out that external, empirical validation is not made up entirely of prediction. Of Schneidewind's six 
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validation criteria (Schneidewind 1992) (all of which fall into external, empirical), the notion of prediction is its 

own category (#30).  

Schneidewind's trackability validation criterion (#43) is another example of an external criterion not related to 

prediction. Trackability bears closest resemblance to causal relationship validity (#8). Trackability states that a 

metric must change as the external quality factor changes. If a metric's attribute truly causes change in 

software’s external quality, then trackability ought to be empirically supported (e.g. increasing quality reduces 

code size, and vice versa).  

6. Spectrum of Philosophies 

We postulate that the reason researchers have yet to determine a sufficient set of criteria comes from a 

fundamental difference in philosophies about how a metric ought to be used. A metric could be used either as a 

pragmatic way of improving software and its surrounding processes or more rigorously as a window into 

understanding the very nature of software. We view the differing perspectives as being based on two opposing 

philosophies: 

 The goal-driven philosophy holds that the primary purpose of a metric is to use it in assessment, prediction, 

and improvement. Validating a metric internally (#24), then, only serves to improve the usefulness of the 

metric in its application. If a metric is “almost” internally valid (i.e. passes many internal validation criteria, 

but fails a few), those with a goal-driven perspective would not see a major problem as long as the project 

benefited from the guidance and decision support gleaned from using the metric. 

 The theory-driven philosophy views that the primary purpose of a metric is to gain understanding of the 

nature of software. Validating a metric internally, then, is of central importance. If a metric does not follow 

the representation condition (#39), for example, then the metric is invalid and should not be further studied. 

Those of the theory-driven perspective often denounce the use of external, empirical studies claiming that 

the studies do not include a thorough discussion of internal, theoretical validity.  

6.1 Goal-Driven Philosophy Principles 

More specifically, the goal-driven philosophy can be characterized by the following ideals: 

• Specify measurement goals. Metrics should be gathered, defined and analyzed with respect to a specific 

goal; that is, how to fix a given set of problems in a given project or organization. For example, Fenton 

(Fenton 1994) and Briand et al. (Briand, Emam et al. 1995), explain that measurement activities must 

always have clear objectives and in fact be objective-based (e.g. goal/question/metric (Basili and Weiss 

1994)) also agree with this idea.  

• Goals vary with specific processes and products. Metrics can only be validated to a certain project, 

process, or environment. Schneidewind (Schneidewind 1991) and Roche (Roche 1994) contend that metrics 

should be used in similar processes, products or environments.  
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• Validation is a continuous process. Since metrics are validated to specific projects, a metric that is valid 

today may not be valid tomorrow (even on the same project), and a metric that is valid on the current 

project may not be relevant on another project. For example, Schneidewind explains that the fundamental 

problem in software metrics validation is the following: there must be a project in which metrics are 

validated, and a different project in which the metrics are applied. A project could suffer from significant 

time lags, product differences, and process differences, and these scheduling differences should signal the 

need to exercise care in choosing the two projects such that the application of the metrics is appropriate 

(Schneidewind 1991).  

• All theoretical analysis eventually serves a goal. Theoretical analysis, such as the representation 

condition, ought to be pursued, but only insofar as helping achieve the measurement goal. For example, 

Schneidewind explains that the purpose of metrics validation is to identify metrics that are related to 

software quality factors (which are typically the measurement goal) (Schneidewind 1991).  

• Metrics can have an ad-hoc definition. A metric can be specific to a product, process, environment, or 

technology. For example, a metric that looks for the use of a specific module in the code would be an ad 

hoc definition as it would not have meaning outside of its project. Those of the goal-driven perspective 

would view ad hoc definitions acceptable as long as the metric leads to fulfilling a goal (Schneidewind 

1991). 

• Actionable metrics are the best. Actionable metrics that are associated with quality factors are the most 

desirable as they can be used to predict and improve the process. Un-actionable prediction is less useful, but 

can still fulfill specific goals and should still be pursued (Fenton and Neil 2000), (Roche 1994). 

• “Good enough” is good enough. Statistical theory is only relevant to the extent that it helps us to measure 

the association or predictability of an actionable metric. To the goal-driven, a debate on whether a metric is 

defined over the correct scale type is less important than external validation because an improper scale type 

can still be used in practice and achieve effective results (Cavano and McCall 1978), (Jones 1994).  

• No universally applicable set of criteria exists. All validation criteria serve to fulfill a specific goal, which 

can vary from project to project. The goal, then dictates which criteria apply to a given project.  

6.2 Theory-Driven Philosophy Principles 

The theory-driven philosophy can be characterized by the following ideals: 

• Must have a theory. Metrics should be gathered based upon an underlying theory of how the measurement 

is representative of an attribute in the software. Improvement in a process-driven sense takes a back seat to 

improvement of our knowledge of software. For example, Briand, et al. (Briand, Emam et al. 1996) contend 

that internal attributes are interesting for software engineers as long as they are a part of software 

engineering theories.  

• Metrics should be generally applicable. A metric must be universally defined before we can begin to 

apply it. For example, Lincke (Lincke and Lowe 2006) contends that metric definitions should be 

independent of environments or project-specifics.  
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• Metrics should be repeatable. Metrics should be gathered systematically by a program or clearly specified 

procedure, so as to ensure that there are no errors during measurement. The goal-driven philosophy would 

agree with this idea, too, but only to the extent that the error is within an acceptable range to make an 

acceptable prediction (Schneidewind 1991).  

• Theoretical, internal validation is paramount. All possible values of the metric must align with the 

assumptions of the attribute being measured. Insinuated in this idea is that a metric should be held to close 

scrutiny mathematically and analytically before it is ever tested empirically or applied to a process. Scale 

type, admissible transformations, and appropriate use of statistical techniques are all stressed (Kitchenham, 

Pfleeger et al. 1995), (Briand, Emam et al. 1996), (Briand, Emam et al. 1995). 

• Know the underlying reasons. Eventually, the true validation of metrics can help us understand the 

underlying forces that cause software and the software development process to behave the way that they do 

(El Emam 2000), (Roche 1994), (Kitchenham, Pfleeger et al. 1995), (Baker, Bieman et al. 1990).  

• Un-actionable is not useless. Just because a metric is not actionable does not render it useless to 

understanding software. Some metrics are relevant because they help us characterize software for many 

purposes outside of prediction and other specific project goals. Therefore, those of theory-driven 

philosophy would view actionability as orthogonal to a metric’s validity (Kitchenham, Pfleeger et al. 1995), 

(Briand, Emam et al. 1996), (Briand, Emam et al. 1995). 

• A universally applicable set of criteria does exist. A universally-applicable set of criteria must exist if we 

are to understand and agree upon the nature of software. 

We contend that the two ends of the spectrum are counter-opposed, meaning they compete with one another 

both in theory and in practice. However, the two philosophies are not mutually exclusive. A given researcher or 

practitioner may agree or disagree with some aspects of both extremes and borrow motivations from both 

philosophies. Even within the same sources, we frequently discovered metrics validation criteria that seemed to 

emanate from both philosophies. As such, we contend that the two philosophies below represent the two ends of 

a spectrum.   

At first glance, one may think that all practitioners are goal-driven and all researchers are theory-driven, 

however, we do not consider this to be the case. For example, a developer can be theory-driven because she 

wants a complexity metric to represent what she believes is complex code. Conversely, a researcher can be goal-

driven because he cares more about the applicability of his research than being theoretically correct. Therefore, 

researchers and practitioners can be at any point along the spectrum. 

In terms of the criteria motivation, one may consider a relative ordering of a given validation criterion or set of 

criteria in terms of their position on the spectrum, but we find that no objective system of measurement exists 

for determining such an ordering. Thus, we do not indicate a mapping of the criteria onto the spectrum we 

propose in this paper. We do not view that one paper, author, or criterion fully adhere to one extreme or the 

other. However, we view the following as representative examples of criteria that are motivated by either the 

goal-driven philosophy or the theory-driven philosophy.  
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• We view five of Schneidewind's six criteria (Schneidewind 1991), (Schneidewind 1992) to be primarily 

motivated by a goal-driven philosophy: association (#5), rank consistency (#36), discriminative power, 

(#13), predictability (#30), and trackability (#42). 

• However, we view Schneidewind's sixth criterion, repeatability (#35), as being in the middle of the 

spectrum. If a metric has been shown to be related to a quality factor on repeated occasions, then it is 

reliable for satisfying specific project goals and lends credence to a universal truth.  

• We view the representation condition (#39) and its sub-criteria to be primarily motivated by a theory-driven 

philosophy. If a metric satisfies the representation condition, then understanding the number system the 

metric maps to implies understanding the attribute being measured. 

• We view actionability (#2) to be primarily motivated by the goal-driven philosophy. Actionability is often 

discussed in terms of satisfying specific goals of a project (Curtis 1980), (Roche 1994), (Fenton and Neil 

2000). Those of the theory-driven philosophy would view actionability as orthogonal to a metric's validity: 

if a metric is valid but is un-actionable in practice, it still speaks to the nature of software. The same 

argument applies to many of the criteria that involve utility, such as economic productivity (#15) and 

product or process relevance (#34). 

7. Choosing Appropriate Metrics Validation Criteria 

In Section 6, we described how the theory-driven and goal-driven perspectives are diametrically opposed, 

leading to a conflict in how the community agrees upon how a metric ought be validated. In this section, we 

provide some guidance on the use of the criteria to make the information in this paper more actionable.  Many of 

the tenets of each philosophy are based upon the intended use of a metric. For example, in the theory-driven 

perspective, intended uses of a metric involve discovering the nature of software, whereas the goal-driven 

perspective typically uses metrics to satisfy business goals. 

One of the objectives of this review is to reveal how the software engineering community believes a metric is to 

be considered valid, that is, suitable and acceptable for its intended use. Introducing the intended use along with 

the metric, therefore, is a critical step toward metric validation. A metric that is valid for one intended use may 

not be valid for another intended use. For example, a metric could be useful for demonstrating universal theories 

about software, but also be infeasible to collect and apply in a development process. In such a case, the metric 

would be considered valid for the former use, and invalid for the latter use. 

Deciding on a particular intended use points the researcher toward specific properties of a metric that are more 

appropriate for that use; we call these advantages.  For example, showing the metric to be a meaningful 

representation of the attribute is one advantage (see “Meaningfulness” below), and showing that it can be 

applied to a development process is another advantage (see “Practicality” below). Furthermore, showing that a 

metric lacks an advantage can be a way to articulate a metric’s limitation. To demonstrate that a metric has 

specific advantages, a researcher or practitioner needs use the criteria that provide those advantages.   

In this review, we observed 11 common advantages from the 47 criteria. Each advantage is an abstract property 

of a metric that a researcher could demonstrate using its associated validation criteria. In Section 7.1, we 
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describe the 11 advantages and map them to the criteria. In Section 7.2, we propose a step-by-step process of 

applying the validation criteria via the intended use, advantages, and the information found in previous sections 

of this paper.  

7.1 Observed Advantages of Using Various Metrics Validation Criteria 

The following is a list of the advantages for metrics validation criteria that we have observed in the sources for 

this survey. The first and second authors of this paper examined the list of criteria to articulate the advantages of 

each metric validation criterion.  We then synthesized our findings and collaboratively developed this list, 

maintaining traceability from the advantages to the criteria. We do not claim that these are the only advantages 

of metrics that could be demonstrated. Table 6 provides our mapping from the advantages to the criteria 

themselves. 

• Mathematical Soundness. Enables users of the metric to safely perform specified mathematical 

operations on the metric without the concern that the results will misrepresent the attribute. 

• Practicality. Software engineers can directly apply the metric to improve their software development 

processes and practices. Criteria that give the practicality advantage show that a metric can be feasibly 

deployed in a software development setting.  

• Correctness. The implementation of a metric rarely obtains incorrect values, which applies especially 

to construct validity types of criteria. 

• Efficiency. The efficiency advantage allows practitioners and researchers to save time and energy by 

choosing a single metric for a given measurement goal. 

• Difference-detecting. The difference-detecting advantage enables metrics to carefully detect 

differences in the attribute, while avoiding metrics that are too dependent on the measured attribute. 

• Hypothesis-strengthening. Empirical work gives researchers more confidence in the conclusions 

because of repeated observations. The hypothesis-strengthening advantage also increases researchers’ 

confidence in the theory being presented. 

• Meaningfulness. The meaningfulness advantage implies an intuitive, easy to understand, conceptual 

relationship between the metric and the attribute that ensures the interpretability of the metric. Do 

researchers intuitively know what the metric means? 

• Decision-informing. The metric helps researchers and practitioners make informed decisions while 

developing software. For example, association may indicate that a factor is related to quality, but if the 

metric is unactionable it still may help with risk assessment. Criteria that provide the decision-

informing advantage focus research on a metric, regardless of how well it represents its attribute. 

• Quality-focused. Criteria that provide the quality-focused advantage indicate that a metric is useful for 

improving the peoples’ lives through high quality software. 

• Theory-building. The theory-building advantage enables researchers or practitioners to make general 

statements about the nature of software and its development. 
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• Consensus Contribution. The consensus contribution advantage highlights criteria that add to the 

common understanding of a metric’s underlying attribute. This advantage also helps researchers agree 

how they define the underlying attribute, which in turn helps define the metric better. Does everybody 

understand how to collect and interpret the metric in the same way? 

 

Table 6. Mapping from Criteria to Advantages 
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1 A Priori Validity     X       

2 Actionability  X     X     

3 Appropriate Continuity X     X    X  

4 Appropriate Granularity           X 

5 Association       X  X   

6 Attribute Validity      X    X  

7 Causal Model Validity  X     X  X   

8 Causal Relationship Validity  X     X  X   

9 Content Validity      X    X  

10 Construct Validity   X       X  

11 Constructiveness       X  X   

12 Definition Validity          X  

13 Discriminative Power  X     X  X   

14 Dimensional Consistency X     X      

15 Economic Productivity  X     X     

16 Empirical Validity     X    X   

17 External Validity       X X X   

18 Factor Independence     X X      

19 Improvement Validity    X        

20 Instrument Validity X  X         

21 Increasing Growth Validity X         X  

22 Interaction Sensitivity X         X  

23 Internal Consistency      X      

24 Internal Validity      X      

25 Monotonicity X           
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26 Metric Reliability   X         

27 Non-collinearity     X   X    

28 Non-exploitability  X          

29 Non-uniformity X     X     X 

30 Notation Validity   X       X  

31 Permutation Validity      X      

32 Predictability  X      X X   

33 Prediction System Validity  X     X X    

34 Product or Process Relevance  X          

35 Protocol Validity   X       X  

36 Rank Consistency     X  X X    

37 Renaming Insensitivity      X      

38 Repeatability     X    X   

39 Representation Condition X     X      

40 Scale Validity X           

41 Stability   X        X 

42 Theoretical Validity      X      

43 Trackability     X  X     

44 Transformation Invariance           X 

45 Underlying Theory Validity         X   

46 Unit Validity      X      

47 Usability  X  X    X    

7.2 Criteria Application Process 

To choose the appropriate metrics validation criteria for a specific metric, a researcher could perform the 

following six steps in order. Note that this methodology does not guarantee that a metric is valid for its intended 

use. Instead, this process acts as a guide for using the current state of the literature to demonstrate the 

advantages and limitations of a metric.  Ultimately, a researcher who intends to validate a metric must consult 

the literature for a thorough analysis of that metric’s validity. 

1. Determine the intended use of the metric. The researcher validating the metric examines how the metric 

ought to be used. Metrics’ intended uses are numerous and vary according to specific practical or scientific 

contexts.   
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2. Using Table 6, highlight the advantages that are appropriate for the intended use chosen in Step 1. 

Researchers can decide on the advantages that they wish to present to the research community or to a 

software development team.  

3. Look up the validation criteria that are tied to the advantages using Table 6. 

4. Carefully choose validation criteria from the list provided by Table 6 while considering the intended use, 

relationships, and motivations in the community amongst the applicable criteria, found in Sections 5 and 6. 

Do not choose criteria based upon how well a metric performs, but rather only by the appropriateness of the 

criterion to the intended use. 

5. Demonstrate that the metric does or does not follow the chosen validation criteria. 

6. In presenting the metric in academic publication, use the vocabulary of Table 6 and Section 4 to describe 

the advantages and limitations of the metric in the context of the intended use identified in Step 1. 

For a detailed example, suppose a researcher is proposing the metric YearsExperience: YearsExperience 

is equal to the sum of the number of years of software development experience on all of the members of the 

team. Following the steps above, 

1. The researcher determines the intended use of YearsExperience as evaluating the team’s ability to 

develop high-quality software.  

2. In proposing this metric to the community, the researcher highlights the advantage that 

YearsExperience will save time and money when applied to a process (i.e. the “Efficiency” advantage 

described above).  

3. The researcher looks up the Efficiency advantage, and discovers that it maps to Improvement Validity 

(#19) and Usabilty (#47) in Table 6. 

4. Both validity criteria apply to the intended use. Thus, to highlight the efficiency of YearsExperience, the 

researcher would choose these two validation criteria. 

5. The researcher then (a) examines other team metrics and demonstrate that YearsExperience is an 

improvement over current metrics (#19) and (b) demonstrates that YearsExperience can be applied to a 

software development process (#47).  

6. In presenting the metric’s validation, either to the team or to the academic community, the researcher then 

uses the vocabulary of Table 6 (i.e. indicate that it is more efficient) to describe the metrics’ advantages 

and limitations. Incidentally, the Usability criterion also has the advantage of Practicality and being 

Quality-Focused, two points that can also be argued in the researcher’s work.  

8. Conclusion 

Our systematic literature review revealed that the academic literature contains a highly diverse set of assertions 

on what constitutes a valid metric. Our review resulted in 47 distinct validation criteria in the published software 

engineering literature, coming from 20 papers and 20 distinct authors. Some of the authors explicitly disagree 
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with some criteria, while other criteria subsume each other. Researchers proposing new metrics should consider 

the applicability of the validation criteria in terms the intended use and the advantages described in this paper. 

Understanding the opposing motivations behind the criteria helps us take the next steps toward establishing 

context-specific sets of validation criteria that are widely accepted. Considering validation criteria with respect 

to metrics’ intended uses can bring metrics validation research from ad hoc analysis to a mature science of 

measurement and software improvement. 
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